Association of oncolytic adenoviruses with chemotherapies: an overview and future directions.

Biochem Pharmacol

CNRS UMR 8203, Vectorologie et thérapeutiques anti-cancéreuses, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France; Univ Paris-Sud, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France. Electronic address:

Published: July 2014

Oncolytic adenoviruses have been used in different preclinical and clinical studies, showing their capacity to kill tumor cells without major adverse events. However, these studies also underline the limitations of this approach. The efficacy of oncolytic adenoviruses is hampered by their limited ability to transduce some tumor types, their lack of selectivity, and their poor dissemination within tumors. In addition, the host immune response may limit oncolytic adenovirus efficacy. Combining oncolytic adenoviruses with chemotherapeutics constitutes an appealing strategy to increase their potency. The first part of this review describes the molecular basis of oncolytic adenoviruses, their use in preclinical studies and clinical trials, their limitations, and strategies to circumvent these limitations. The second part will focus on studies combining oncolytic adenoviruses with chemotherapeutic drugs, including standard chemotherapeutic drugs, molecularly targeted drugs, and other drugs that have been combined with oncolytic adenoviruses. Finally, based on these studies, we describe future directions and general rules that could be followed to identify chemotherapeutic drugs displaying additive/synergistic effects when combined with oncolytic adenoviruses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.05.003DOI Listing

Publication Analysis

Top Keywords

oncolytic adenoviruses
32
chemotherapeutic drugs
12
adenoviruses
8
future directions
8
oncolytic
8
adenoviruses preclinical
8
combining oncolytic
8
combined oncolytic
8
studies
5
drugs
5

Similar Publications

Oncolytic viruses (OVs) are a promising therapeutic approach for cancer, although their systemic administration faces significant challenges. Mesenchymal stem cells have emerged as potential carriers to overcome these obstacles due to their tumor-tropic properties. This study investigates the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as carriers for OVs in cancer therapy, focusing on enhancing their efficacy through different culture conditions.

View Article and Find Full Text PDF

Background: Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd).

View Article and Find Full Text PDF

Role of homologous recombination/recombineering on human adenovirus genome engineering: Not the only but the most competent solution.

Eng Microbiol

March 2024

Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), School of Medicine, Faculty of Health, Witten/Herdecke University, Stockumer Str. 10 58453 Witten, Germany.

Adenoviruses typically cause mild illnesses, but severe diseases may occur primarily in immunodeficient individuals, particularly children. Recently, adenoviruses have garnered significant interest as a versatile tool in gene therapy, tumor treatment, and vaccine vector development. Over the past two decades, the advent of recombineering, a method based on homologous recombination, has notably enhanced the utility of adenoviral vectors in therapeutic applications.

View Article and Find Full Text PDF

Strategies for Modifying Adenoviral Vectors for Gene Therapy.

Int J Mol Sci

November 2024

Laboratory of Genome Editing, Research Centre for Medical Genetics, Moskvorechye, 1, 115522 Moscow, Russia.

Adenoviral vectors (AdVs) are effective vectors for gene therapy due to their broad tropism, large capacity, and high transduction efficiency, making them widely used as oncolytic vectors and for creating vector-based vaccines. This review also considers the application of adenoviral vectors in oncolytic virotherapy and gene therapy for inherited diseases, analyzing strategies to enhance their efficacy and specificity. However, despite significant progress in this field, the use of adenoviral vectors is limited by their high immunogenicity, low specificity to certain cell types, and limited duration of transgene expression.

View Article and Find Full Text PDF

Human adenovirus (HAdV)-based oncolytic vectors, which are designed to preferentially replicate in and kill cancer cells, have shown modest efficacy in human clinical trials in part due to poor viral distribution throughout the tumor mass. Previously, we showed that expression of the p14 fusion-associated small transmembrane (FAST) fusogenic protein could enhance oncolytic HAdV efficacy and reduce tumor growth rate in a human xenograft mouse model of cancer. We now explore whether co-expression of the adenovirus death protein (ADP) with p14 FAST protein could synergize to further enhance oncolytic vector efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!