We describe a method for constructing a hierarchy of model potentials approximating the functional derivative of a given orbital-dependent exchange-correlation functional with respect to electron density. Each model is derived by assuming a particular relationship between the self-consistent solutions of Kohn-Sham (KS) and generalized Kohn-Sham (GKS) equations for the same functional. In the KS scheme, the functional is differentiated with respect to density, in the GKS scheme--with respect to orbitals. The lowest-level approximation is the orbital-averaged effective potential (OAEP) built with the GKS orbitals. The second-level approximation, termed the orbital-consistent effective potential (OCEP), is based on the assumption that the KS and GKS orbitals are the same. It has the form of the OAEP plus a correction term. The highest-level approximation is the density-consistent effective potential (DCEP), derived under the assumption that the KS and GKS electron densities are equal. The analytic expression for a DCEP is the OCEP formula augmented with kinetic-energy-density-dependent terms. In the case of exact-exchange functional, the OAEP is the Slater potential, the OCEP is roughly equivalent to the localized Hartree-Fock approximation and related models, and the DCEP is practically indistinguishable from the true optimized effective potential for exact exchange. All three levels of the proposed hierarchy require solutions of the GKS equations as input and have the same affordable computational cost.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4871500 | DOI Listing |
JMIR AI
January 2025
Department of Information Systems and Business Analytics, Iowa State University, Ames, IA, United States.
Background: In the contemporary realm of health care, laboratory tests stand as cornerstone components, driving the advancement of precision medicine. These tests offer intricate insights into a variety of medical conditions, thereby facilitating diagnosis, prognosis, and treatments. However, the accessibility of certain tests is hindered by factors such as high costs, a shortage of specialized personnel, or geographic disparities, posing obstacles to achieving equitable health care.
View Article and Find Full Text PDFJ Med Microbiol
January 2025
Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK.
Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFSoft Matter
January 2025
Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
In this work, a theoretical approach is developed to investigate the structural properties of ionic microgels induced by a circularly polarized (CP) electric field. Following a similar study on chain formation in the presence of linearly polarized fields [T. Colla , , 2018, , 4321-4337], we propose an effective potential between microgels which incorporates the field-induced interactions a static, time averaged polarizing charge at the particle surface.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Duke University, Department of Physics, Durham, North Carolina 27708, USA.
The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!