This paper's objective is to create a "consistent" mean-field based Kohn-Sham (KS) density functional theory (DFT) meaning the functional should not only provide good total energy properties, but also the corresponding KS eigenvalues should be accurate approximations to the vertical ionization potentials (VIPs) of the molecule, as the latter condition attests to the viability of the exchange-correlation potential (VXC). None of the prominently used DFT approaches show these properties: the optimized effective potential VXC based ab initio dft does. A local, range-separated hybrid potential cam-QTP-00 is introduced as the basis for a "consistent" KS DFT approach. The computed VIPs as the negative of KS eigenvalue have a mean absolute error of 0.8 eV for an extensive set of molecule's electron ionizations, including the core. Barrier heights, equilibrium geometries, and magnetic properties obtained from the potential are in good agreement with experiment. A similar accuracy with less computational efforts can be achieved by using a non-variational global hybrid variant of the QTP-00 approach.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4871409DOI Listing

Publication Analysis

Top Keywords

density functional
8
functional theory
8
potential vxc
8
increasing applicability
4
applicability density
4
theory consequences
4
consequences ionization-potential
4
ionization-potential improved
4
improved exchange-correlation
4
exchange-correlation potentials
4

Similar Publications

Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.

View Article and Find Full Text PDF

In this work, we explored the role of a single electron in the energy of neutral and charged clusters of using data visualization and statistical techniques as a new insight. Initially, we studied the effects of one electron, time, and temperature on energy using multiple linear regression analysis with dummy variables, and the results demonstrated that all three predictors significantly affected the energy. Time had a positive impact (direct ratio effect) on the energy of , and and a negative impact (inverse ratio effect) on the energy of while temperature had a positive effect on the energy of all three sodium clusters.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Efficient amine-assisted CO hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters.

Nat Commun

January 2025

Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.

Amine-assisted two-step CO hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!