Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4874645DOI Listing

Publication Analysis

Top Keywords

chirality control
12
electric field
8
field rotation
8
chiral
4
chiral selection
4
selection frequency
4
frequency response
4
response spiral
4
spiral waves
4
waves reaction-diffusion
4

Similar Publications

Nanoscale polarization transient gratings.

Nat Commun

December 2024

Elettra - Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5 in Area Science Park, 34149, Trieste, Italy.

Light manipulation at the nanoscale is essential both for fundamental science and modern technology. The quest to shorter lengthscales, however, requires the use of light wavelengths beyond the visible. In particular, in the extreme ultraviolet regime these manipulation capabilities are hampered by the lack of efficient optics, especially for polarization control.

View Article and Find Full Text PDF

Substrate-Mediated Growth of Au Nanowires Under Weak CTAB Control and Rapid Au Deposition.

Small Methods

December 2024

Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.

The selective Au deposition at the Au-substrate interface is known to give ultrathin Au nanowires and the synthesis usually employs strong thiol-based ligands. It is shown that, by increasing the rate of Au deposition, weak cetyltrimethylammonium bromide (CTAB) can be made to behave like a strong ligand, so that it induces Active Surface Growth and gives Au nanowires. The ligand strength also depends on the packing interactions in the ligand layer, in the order of CTAB, CTAB, and CTAB.

View Article and Find Full Text PDF

Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies.

Int J Nanomedicine

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.

Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.

View Article and Find Full Text PDF

Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity.

Precis Chem

December 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (// = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA ( ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA ( ≈ 32%).

View Article and Find Full Text PDF

The convergent total synthesis of ixabepilone and its analogues in a 13-step longest linear sequence is reported. The crucial chiral centers at challenging C3-O, C8-C and C15-N positions on the scaffold of the ixabepilone were installed via highly efficient asymmetric hydrogenations (up to 95% yield and up to 99% e.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!