Molecular dynamics simulations with separate thermostats for rotational and translational motion were used to study the effect of these degrees of freedom on the structure of water around model solutes. To describe water molecules we used the SPC/E model. The simplest solute studied here, the hydrophobe, was represented as a Lennard-Jones particle. Since direct interaction between the hydrophobe and water molecules has no angular dependence the influence of the increase of the rotational temperature on the solvation of a hydrophobe is only indirect. In the next step the central solute was assumed to be charged with either a positive or a negative charge to mimic an ion in water. Hence, depending on the charge of the ion, the neighboring water molecules assumed different angular distributions. The principal conclusions of this work are: (i) an increase of the translational temperature always decreases the height of the first peak in the solute-water radial distribution function; (ii) an increase of the rotational temperature yields an increase in the first peak in the solute-water radial distribution function for hydrophobes and cations; (iii) in contrast to this, the solvation peak decreases around ions with sufficiently large negative charge; and (iv) an increase of the rotational temperature affects cations in an opposite way to anions. For this reason complex molecules with a small net charge may not be very sensitive to variation of the rotational temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032416 | PMC |
http://dx.doi.org/10.1063/1.4875280 | DOI Listing |
Microb Cell Fact
January 2025
The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, China.
The bacterium Streptomyces sp. KN37 was isolated from the soil of Kanas, Xinjiang. The broth dilution of strain KN37 has a strong inhibitory effect against a variety of crop pathogenic fungi.
View Article and Find Full Text PDFACS Appl Electron Mater
January 2025
Department of Applied Physics, National Pingtung University, No. 4-18, Minsheng Road, 90044 Pingtung, Taiwan.
This study introduces a simple approach to dynamically control multilevel optical ellipticity in ferrimagnetic GdFeCo alloys by switching the spin orientation through Joule heating induced by electrical current, with the assistance of a low magnetic field of 3.5 mT. It is demonstrated that selecting specific compositions of Gd (FeCo) alloys, with magnetic compensation temperatures near or above room temperature, allows for significant manipulation of the circular dichroism (CD) effect.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo, São Paulo, SP 05508-030, Brazil.
Labyrinth seals (LSs) in turbomachinery are used to minimize leaks. This study presents an experimental setup designed to test and validate LS designs. The test bench (TB) described in this paper can evaluate different LS designs obtained through various methods to find better solutions to mitigate greenhouse gas (GHG) emissions.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physical Chemistry, Sciences II, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland.
The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!