Radiative association for the formation of hydrogen fluoride through the A(1)Π → X(1)Σ(+) and X(1)Σ(+) → X(1)Σ(+) transitions is studied using quantum and classical dynamics. The total thermal rate constant is obtained for temperatures from 10 K to 20,000 K. Agreement between semiclassical and quantum approaches is observed for the A(1)Π → X(1)Σ(+) rate constant above 2000 K. The agreement is explained by the fact that the corresponding cross section is free of resonances for this system. At temperatures below 2000 K we improve the agreement by implementing a simplified semiclassical expression for the rate constant, which includes a quantum corrected pair distribution. The rate coefficient for the X(1)Σ(+) → X(1)Σ(+) transition is calculated using Breit-Wigner theory and a classical formula for the resonance and direct contributions, respectively. In comparison with quantum calculations the classical formula appears to overestimate the direct contribution to the rate constant by about 12% for this transition. Below about 450 K the resonance contribution is larger than the direct, and above that temperature the opposite holds. The biggest contribution from resonances is at the lowest temperature in the study, 10 K, where it is more than four times larger than the direct. Below 1800 K the radiative association rate constant due to X(1)Σ(+) → X(1)Σ(+) transitions dominates over A(1)Π → X(1)Σ(+), while above that temperature the situation is the opposite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4874271 | DOI Listing |
BMC Cardiovasc Disord
January 2025
Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
Aim: This study aims to investigate the effects of combining a multifunctional pulse wave sphygmomanometer with constant temperature ice on patients with forearm hematoma following coronary intervention.
Methods: Patients who developed forearm hematoma after undergoing coronary intervention from March 2021 to March 2023 at our hospital were selected as the study cohort. Using a random number table, they were divided into two groups the control group and the research group.
Sci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFBMC Sports Sci Med Rehabil
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine, Taoyuan, 33302, Taiwan.
Background: Both the basal metabolic rate (BMR) and excess postexercise oxygen consumption (EPOC) can be influenced by physical training and are associated with body composition and aerobic capacity. Although a correlation between the two is expected, this relationship has not been explored. Our hypothesis is that a higher BMR is correlated with lower EPOC.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, Russian Federation, 191002.
Background: Deoxyribozymes or DNAzymes represent artificial short DNA sequences bearing many catalytic properties. In particular, DNAzymes able to cleave RNA sequences have a huge potential in gene therapy and sequence-specific analytic detection of disease markers. This activity is provided by catalytic cores able to perform site-specific hydrolysis of the phosphodiester bond of an RNA substrate.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
An investigation into the degradation of ciprofloxacin (CIP) under visible light was carried out using an efficient photocatalyst, i.e., CoFeO@3D-TiO@GA, synthesized by doping CoFeO@three-dimensional-TiO into a hierarchical porous graphene aerogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!