Although sex chromosome meiotic drive has been observed in a variety of species for over 50 years, the genes causing drive are only known in a few cases, and none of these cases cause distorted sex-ratios in nature. In stalk-eyed flies (Teleopsis dalmanni), driving X chromosomes are commonly found at frequencies approaching 30% in the wild, but the genetic basis of drive has remained elusive due to reduced recombination between driving and non-driving X chromosomes. Here, we used RNAseq to identify transcripts that are differentially expressed between males carrying either a driving X (XSR) or a standard X chromosome (XST), and found hundreds of these, the majority of which are X-linked. Drive-associated transcripts show increased levels of sequence divergence (dN/dS) compared to a control set, and are predominantly expressed either in testes or in the gonads of both sexes. Finally, we confirmed that XSR and XST are highly divergent by estimating sequence differentiation between the RNAseq pools. We found that X-linked transcripts were often strongly differentiated (whereas most autosomal transcripts were not), supporting the presence of a relatively large region of recombination suppression on XSR presumably caused by one or more inversions. We have identified a group of genes that are good candidates for further study into the causes and consequences of sex-chromosome drive, and demonstrated that meiotic drive has had a profound effect on sequence evolution and gene expression of X-linked genes in this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022487 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1004362 | DOI Listing |
Genes (Basel)
December 2024
Department of Biology, Hamilton College, Clinton, NY 13323, USA.
(maize) is both an agronomically important crop and a powerful genetic model system with an extensive molecular toolkit and genomic resources. With these tools, maize is an optimal system for cytogenetic study, particularly in the investigation of chromosome segregation. Here, we review the advances made in maize chromosome segregation, specifically in the regulation and dynamic assembly of the mitotic and meiotic spindle, the inheritance and mechanisms of the abnormal chromosome variant Ab10, the regulation of chromosome-spindle interactions via the spindle assembly checkpoint, and the function of kinetochore proteins that bridge chromosomes and spindles.
View Article and Find Full Text PDFPLoS Biol
January 2025
Institut de Génétique Humaine, Univ Montpellier, Centre National de la Recherche Scientifique, Montpellier, France.
In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters.
View Article and Find Full Text PDFEMBO J
January 2025
Newcastle University Biosciences Institute (NUBI), Central Parkway, Newcastle University, NE1 3BZ, Newcastle upon Tyne, UK.
The cellular concentrations of splicing factors (SFs) are critical for controlling alternative splicing. Most serine and arginine-enriched (SR) protein SFs regulate their own concentration via a homeostatic feedback mechanism that involves regulation of inclusion of non-coding 'poison exons' (PEs) that target transcripts for nonsense-mediated decay. The importance of SR protein PE splicing during animal development is largely unknown despite PE ultra-conservation across animal genomes.
View Article and Find Full Text PDFJ Dev Biol
November 2024
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400076, India.
Chromosome condensation plays a pivotal role during faithful chromosome segregation, hence, understanding the factors that drive condensation is crucial to get mechanistic insight into chromosome segregation. Previously, we showed that in budding yeast, the absence of the non-essential kinetochore proteins affects chromatin-condensin association in meiosis but not in mitosis. A differential organization of the kinetochores, that we and others observed earlier during mitosis and meiosis may contribute to the meiotic-specific role.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!