Real-time imaging and local elemental analysis of nanostructures in liquids.

Chem Commun (Camb)

Materials Performance Centre and Electron Microscopy Centre, School of Materials, University of Manchester, Manchester, UK.

Published: September 2014

A new design of in situ liquid cells is demonstrated, providing the first nanometer resolution elemental mapping of nanostructures in solution. The technique has been applied to investigate dynamic liquid-phase synthesis of core-shell nanostructures and to simultaneously image the compositional distribution for multiple elements within the resulting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cc02743dDOI Listing

Publication Analysis

Top Keywords

real-time imaging
4
imaging local
4
local elemental
4
elemental analysis
4
analysis nanostructures
4
nanostructures liquids
4
liquids design
4
design situ
4
situ liquid
4
liquid cells
4

Similar Publications

Background: Left ventricular (LV) volumes can be calculated from various linear, monoplane, and multiplane echocardiographic methods, and the same method can be applied to different imaging views. However, these methods and their variations have not been comprehensively evaluated against real-time 3-dimensional echocardiography (RT3D).

Hypothesis/objectives: To identify the LV volumetric approaches that produce the least bias and the best agreement with RT3D, and to assess interoperator reproducibility between an experienced and an inexperienced operator.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.

View Article and Find Full Text PDF

MonoSeg: An Infrared UAV Perspective Vehicle Instance Segmentation Model with Strong Adaptability and Integrity.

Sensors (Basel)

January 2025

National Key Laboratory of Multispectral Information Intelligent Processing Technology, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430000, China.

Despite rapid progress in UAV-based infrared vehicle detection, achieving reliable target recognition remains challenging due to dynamic viewpoint variations and platform instability. The inherent limitations of infrared imaging, particularly low contrast ratios and thermal crossover effects, significantly compromise detection accuracy. Moreover, the computational constraints of edge computing platforms pose a fundamental challenge in balancing real-time processing requirements with detection performance.

View Article and Find Full Text PDF

Drones are extensively utilized in both military and social development processes. Eliminating the reliance of drone positioning systems on GNSS and enhancing the accuracy of the positioning systems is of significant research value. This paper presents a novel approach that employs a real-scene 3D model and image point cloud reconstruction technology for the autonomous positioning of drones and attains high positioning accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!