Cellular hypoxic preconditioning is being employed to obtain complex, yet physiological, secretomes rich is angiogenic factors. We previously proposed exposing peripheral blood cells (PBCs) to hypoxic stress stimulation, and demonstrated that controlled release of PBC-derived factor mixtures induces directional microvessel growth in vitro. Hypoxia therefore provides a useful tool for enhancing the angiogenic potential of blood plasma, by generating compositions based on PBCs' natural responses to a wound-like microenvironment. Here, we discuss various methods for preparing and delivering Hypoxia Preconditioned Plasma (HPP), i.e., plasma derived after extracorporeal conditioning of anticoagulated blood under physiological temperature and hypoxia. Special emphasis is given to those approaches that will likely facilitate the clinical translation of HPP-based therapies. We finally draw a comparison between HPP and other, currently available blood-based products, and present the case that its arrival paves the way for developing next-generation autologous therapies toward angiogenesis-supported tissue repair and regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4154949 | PMC |
http://dx.doi.org/10.4161/org.29208 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, No. 15, Changle West Road, Xi'an, 710032, Shaanxi, China.
Background And Objective: Adipose-derived mesenchymal stem cell-derived extracellular vesicles (ASCs-Exos) possess angiogenic potential, which can enhance the retention rate of fat grafts. Hypoxic preconditioning can augment their functionality. However, the optimal conditions for hypoxic preconditioning and the specific mechanisms by which it exerts its effects are not well defined.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Graduate School of Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
Mesenchymal stem cells (MSC) possess unique immunomodulatory properties and have enormous potential in the treatment of graft-versus-host disease (GVHD). However, the low implantation and survival rates of MSC in vivo, coupled with their weak immunosuppressive functions, have resulted in unstable clinical efficacy in the treatment of GVHD. Preconditioning of MSC with hypoxia, active molecules and gene modification can enhance the function of MSC and improve the implantation rate, survival rate and therapeutic effect of MSC.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.
Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.
Stem Cell Res Ther
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, P.R. China.
Background: hucMSC-exosomes can be engineered to strengthen their therapeutic potential, and the present study aimed to explore whether hypoxic preconditioning can enhance the angiogenic potential of hucMSC-exosomes in an experimental model of POF.
Methods: Primary hucMSCs and ROMECs were isolated from fresh tissue samples and assessed through a series of experiments. Exosomes were isolated from hucMSCs under normoxic or hypoxic conditions (norm-Exos and hypo-Exos, respectively) and then characterized using classic experimental methods.
Colloids Surf B Biointerfaces
December 2024
Department of Stomatology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China. Electronic address:
Periodontitis, an inflammatory and infectious disease resulting from dental plaque, affects tooth-supporting tissues and interconnects with various systemic conditions. Advancing periodontal tissue regeneration stands as pivotal in periodontitis treatment. Presently, odontogenic stem cells garner substantial interest for dental pulp functional tissue regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!