Conversion of chemical scrubbers to biotrickling filters for VOCs and H2S treatment at low contact times.

Appl Microbiol Biotechnol

Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.

Published: January 2015

The purpose of this work was to evaluate the technical and economical feasibility of converting three chemical scrubbers in series to biotrickling filters (BTFs) for the simultaneous removal of H2S and volatile organic compounds (VOCs). The conversion of the full-scale scrubbers was based on previous conversion protocols. Conversion mainly required replacing the original carrier material and recycle pumps as well as modifying the controls and operation of the reactors. Complete removal of H2S and VOCs on a routine basis was reached at neutral pH in a longer period of time compared to previous conversions reported. Biotrickling filters operated at a gas contact time of about 1.4 s per reactor and at pH controlled between 6.5 and 6.8. Inlet average concentrations below 10 ppmv of H2S and below 5 ppmv for VOCs were often completely removed. The first and second bioreactors played a primary role in H2S removal. Year-round operation of the biotrickling filters proved the ability of the system to handle progressive load increases of H2S and VOCs. However, fast, sudden load changes often lead to reduced removal efficiencies. Odor analyses showed average removal efficiencies above 80%. Gas chromatography-mass spectrometry of selected samples showed that outlet odor concentration was due to limited removal of VOCs. The conversion showed was economically viable taking into account the theoretical consumption of chemicals needed for the absorption and oxidation of both H2S and VOCs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-5796-2DOI Listing

Publication Analysis

Top Keywords

biotrickling filters
16
h2s vocs
12
chemical scrubbers
8
removal h2s
8
vocs conversion
8
removal efficiencies
8
vocs
7
h2s
7
removal
6
conversion
5

Similar Publications

Pilot-scale biogas desulfurization through anoxic biofiltration.

J Hazard Mater

December 2024

Institute of Sustainable Processes, Paseo Prado de la Magdalena 3-5, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid 47011, Spain. Electronic address:

In this study, the performance of a pilot-scale biotrickling filter (BTF) for anoxic hydrogen sulfide (HS) removal from real biogas was evaluated over 226 days. The BTF, inoculated with activated sludge from a nearby wastewater treatment plant, operated in an industrial environment with raw biogas from an anaerobic digester fed with municipal solid waste. The operating strategy was based on controlling nitrate consumption by sulfur-oxidizing nitrate-reducing (SO-NR) bacteria.

View Article and Find Full Text PDF

Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives.

Bioresour Technol

December 2024

School of Environment & Natural Resources, Zhejiang University of Science & Technology, HangZhou 310023, China; College of Environment, Zhejiang University of Technology, HangZhou 310014, China. Electronic address:

Biotrickling filter (BTF) technology is inefficient in the treatment of Cl-containing volatile organic compounds (VOCs) such as chlorobenzene (CB). This study adopted non-thermal plasma (NTP) as a pretreatment and conducted in-depth analyses, especially in microorganisms, to investigate strengthening mechanism of a NTP to a BTF in the process. The introduction of NTP enhance efficiency of CB removal from 65 % to 90 %, and CO generation from 60 % to 85 %.

View Article and Find Full Text PDF

Removing hydrogen sulfide (HS) toxic and corrosive gas from the natural gas processing and utilization industry is a challenging problem for managers of these industries. This problem involves different economic, environmental, and health issues. Various technologies have been employed to remove the HS gas from these industries, and choosing appropriate HS removal technologies is a complex multi-criteria decision-making (MCDM) problem.

View Article and Find Full Text PDF

Immobilized fillers have been increasingly utilized in biotrickling filters (BTFs) due to their positive impact on shock load resistance and recovery performance. However, due to the inherent characteristics of its immobilized carrier, the immobilized filler is prone to swelling during the long-term operation of the system, resulting in increased pressure drop. Polyurethane (PU) sponge was used as the cross-linked skeleton of immobilized filler and compared with direct emulsified cross-linked immobilized filler for treating ethylbenzene gas.

View Article and Find Full Text PDF

Assessing the impact of packaging materials on anoxic biotrickling filtration of siloxanes in biogas: Effectiveness of activated carbon in removal performance.

J Environ Manage

November 2024

Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n., Valladolid, 47011, Spain. Electronic address:

Article Synopsis
  • Siloxanes (VMS) are harmful organosilicon compounds that affect the environment and human health, and their presence in biogas complicates its economic use.
  • This study tests three types of packing materials for their effectiveness in removing VMS during anoxic biofiltration, finding that a combination of plastic rings and activated carbon (BTF-3) achieves the highest removal rates, especially for specific VMS types.
  • Despite not seeing performance improvements with changes in liquid velocity or additional nanoparticles, the study reveals promising bacterial communities for VMS degradation and emphasizes activated carbon’s potential in enhancing treatment methods.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!