Simulated shift work in rats perturbs multiscale regulation of locomotor activity.

J R Soc Interface

Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli 32001, Taiwan, Republic of China

Published: July 2014

Motor activity possesses a multiscale regulation that is characterized by fractal activity fluctuations with similar structure across a wide range of timescales spanning minutes to hours. Fractal activity patterns are disturbed in animals after ablating the master circadian pacemaker (suprachiasmatic nucleus, SCN) and in humans with SCN dysfunction as occurs with aging and in dementia, suggesting the crucial role of the circadian system in the multiscale activity regulation. We hypothesized that the normal synchronization between behavioural cycles and the SCN-generated circadian rhythms is required for multiscale activity regulation. To test the hypothesis, we studied activity fluctuations of rats in a simulated shift work protocol that was designed to force animals to be active during the habitual resting phase of the circadian/daily cycle. We found that these animals had gradually decreased mean activity level and reduced 24-h activity rhythm amplitude, indicating disturbed circadian and behavioural cycles. Moreover, these animals had disrupted fractal activity patterns as characterized by more random activity fluctuations at multiple timescales from 4 to 12 h. Intriguingly, these activity disturbances exacerbated when the shift work schedule lasted longer and persisted even in the normal days (without forced activity) following the shift work. The disrupted circadian and fractal patterns resemble those of SCN-lesioned animals and of human patients with dementia, suggesting a detrimental impact of shift work on multiscale activity regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032547PMC
http://dx.doi.org/10.1098/rsif.2014.0318DOI Listing

Publication Analysis

Top Keywords

shift work
20
activity
14
fractal activity
12
activity fluctuations
12
multiscale activity
12
activity regulation
12
simulated shift
8
multiscale regulation
8
activity patterns
8
dementia suggesting
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!