Background: DNA methylation biomarkers capable of diagnosis and subtyping have been found for many cancers. Fifteen such markers have previously been identified for pediatric acute lymphoblastic leukemia (ALL). Validation of these markers is necessary to assess their clinical utility for molecular diagnostics. Substantial efficiencies could be achieved with these DNA methylation markers for disease tracking with potential to replace patient-specific genetic testing.
Methods: We evaluated DNA methylation of promoter regions of TLX3 (T-cell leukemia homeobox) and FOXE3 (forkhead box E3) in bone marrow biopsies from 197 patients classified as leukemic (n = 95) or clear of the disease (n = 102) by MALDI-TOF. Using a single nucleotide extension assay (methylSABER), we tested 10 bone marrow biopsies collected throughout the course of patient chemotherapy. Using reference materials, diagnostic thresholds and limits of detection were characterized for both methods.
Results: Reliable detection of DNA methylation of TLX3 and FOXE3 segregated ALL from those clear of disease with minimal false-negative and false-positive results. The limit of detection with MALDI-TOF was 1000-5000 copies of methylated allele. For methylSABER, the limit of detection was 10 copies of methylated TLX3, which enabled monitoring of minimal residual disease in ALL patients.
Conclusions: Mass spectrometry procedures can be used to regionally multiplex and detect rare DNA methylation events, establish DNA methylation loci as clinically applicable biomarkers for disease diagnosis, and track pediatric ALL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1373/clinchem.2013.219956 | DOI Listing |
Mar Biotechnol (NY)
January 2025
Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
The influence of sex and heredity on DNA methylation in the somatic tissues of mice has been well-documented, with similar hereditary effects reported in honeybees. However, the extent to which these factors affect DNA methylation in molluscan somatic tissues remains poorly understood. In this study, we investigated genomic DNA methylation patterns in the adductor muscle of two genetically distinct oyster strains using whole-genome bisulfite sequencing (WGBS).
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed -defective NSCLC cells.
View Article and Find Full Text PDFRSC Adv
January 2025
Medicinal Chemistry Department, Faculty of Pharmacy, Minia University 61519 Minia Egypt.
Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Division of Biological and Health Sciences, University of Pittsburgh, 300 Campus Drive, Bradford PA 16701.
Invasive ductal carcinoma (IDC) is the most common type of breast cancer, primarily affecting women in the United States and across the world. This review summarizes key concepts related to IDC causes, treatment approaches, and the identification of biological markers for specific prognoses. Furthermore, we reviewed many studies, including those involving patients with IDC and ductal carcinoma in situ (DCIS) that progressed to IDC.
View Article and Find Full Text PDFCardiovasc Diabetol
January 2025
Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010, Málaga, Spain.
Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!