Digital reconstruction of the cell body in dense neural circuits using a spherical-coordinated variational model.

Sci Rep

1] Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China [2] MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Published: May 2014

Mapping the neuronal circuits is essential to understand brain function. Recent technological advancements have made it possible to acquire the brain atlas at single cell resolution. Digital reconstruction of the neural circuits down to this level across the whole brain would significantly facilitate brain studies. However, automatic reconstruction of the dense neural connections from microscopic image still remains a challenge. Here we developed a spherical-coordinate based variational model to reconstruct the shape of the cell body i.e. soma, as one of the procedures for this purpose. When intuitively processing the volumetric images in the spherical coordinate system, the reconstruction of somas with variational model is no longer sensitive to the interference of the complicated neuronal morphology, and could automatically and robustly achieve accurate soma shape regardless of the dense spatial distribution, and diversity in cell size, and morphology. We believe this method would speed drawing the neural circuits and boost brain studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021323PMC
http://dx.doi.org/10.1038/srep04970DOI Listing

Publication Analysis

Top Keywords

neural circuits
12
variational model
12
digital reconstruction
8
cell body
8
dense neural
8
brain studies
8
brain
5
cell
4
reconstruction cell
4
body dense
4

Similar Publications

Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

Shaping the Space: A Role for the Hippocampus in Mental Imagery Formation.

Vision (Basel)

January 2025

Centre for the Study of Perceptual Experience, Department of Philosophy, University of Glasgow, Glasgow G12 8QQ, UK.

Mental imagery is claimed to underlie a host of abilities, such as episodic memory, working memory, and decision-making. A popular view holds that mental imagery relies on the perceptual system and that it can be said to be 'vision in reverse'. Whereas vision exploits the bottom-up neural pathways of the visual system, mental imagery exploits the top-down neural pathways.

View Article and Find Full Text PDF

Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.

View Article and Find Full Text PDF

A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!