Synthesis and structural characterization of amido scorpionate rare earth metals complexes.

Dalton Trans

Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, 13071-Ciudad Real, Spain.

Published: July 2014

AI Article Synopsis

  • The study investigates the reactivity of hybrid scorpionate/cyclopentadienyl ligands in reactions with rare earth metal precursors, highlighting that the size of the metal ion greatly influences the reaction outcomes.
  • The reaction with small metal ions like Sc did not occur even at high temperatures, while medium-sized ions (Y, Lu) required high temperatures for successful reactions, yielding specific derivatives.
  • In contrast, reactions with larger metal ions (Nd, Sm) took place rapidly at room temperature, producing different bis(silylamide) complexes, with the structures characterized using spectroscopic methods and X-ray crystallography.

Article Abstract

The reactivity of hybrid scorpionate/cyclopentadienyl ligands in the form of the protio derivatives as a mixture of two regioisomers, namely bpzcpH [1-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl}-1,3-cyclopentadiene and 2-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethyl}-1,3-cyclopentadiene] and bpztcpH [1-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethyl}-1,3-cyclopentadiene and 2-{2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethyl}-1,3-cyclopentadiene], with the tris(silylamide) precursors [M{N(SiHMe2)2}3(thf)x] of rare earth metals (including the group 3 metals scandium and yttrium) is related to the atomic radii of the metal centres. The reaction with the precursor containing the smallest ion, [Sc{N(SiHMe2)2}3(thf)], did not proceed even heating at reflux temperature in toluene. The reaction with the precursors that contain a medium-sized metal ion, i.e., [M{N(SiHMe2)2}3(thf)2] (M = Y, Lu), proceeded only at high temperature and gave good yields of the silylenediamide-containing derivatives [M{κ(2)-NN-Me2Si(NSiHMe2)2}(bpzcp)] (M = Y , Lu ) and [M{κ(2)-NN-Me2Si(NSiHMe2)2}(bpztcp)] (M = Y , Lu ) by an double activation of Si-H and Si-N bonds. However, the reaction with the precursors that contained the largest metal ions, i.e., [M{N(SiHMe2)2}3(thf)2] (M = Nd, Sm), proceeded rapidly at room temperature to afford the bis(silylamide) complexes [M{N(SiHMe2)2}2(bpzcp)] (M = Nd , Sm ) and [M{N(SiHMe2)2}2(bpztcp)] (M = Nd , Sm ). Additionally, the alkyl heteroscorpionate yttrium and lutetium complexes [M(CH2SiMe3)2(NNCp)] (M = Y, Lu) reacted with an excess of HN(SiHMe2)2 to give the mixed alkyl/amide derivatives [M{N(SiHMe2)2}(CH2SiMe3)(bpzcp)] (M = Y , Lu ) and [M{N(SiHMe2)2}(CH2SiMe3)(bpztcp)] (M = Y , Lu ). The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of , and were also established.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt00770kDOI Listing

Publication Analysis

Top Keywords

rare earth
8
earth metals
8
reaction precursors
8
[m{nsihme22}3thf2] proceeded
8
synthesis structural
4
structural characterization
4
characterization amido
4
amido scorpionate
4
scorpionate rare
4
complexes
4

Similar Publications

High-pressure, high-temperature synthesis at 12 GPa between 750 and 1000°C for 30 to 300 min yields the last missing rare-earth metal monogermanide, YbGe. Powder and single-crystal X-ray diffraction measurements reveal that the compound crystallizes in a FeB-type structure (space group Pnma, a = 7.901(2) Å, b = 3.

View Article and Find Full Text PDF

Technology-critical elements (TCEs), essential in emerging technologies, are increasingly finding their way into our environment, raising concerns about their sparsely studied behavior and toxicity. To contribute insights into the toxicological aspects, we employed bioassays to investigate the possible cytotoxic effects in four representative cell lines (AR-EcoScreen GR-KO-M1, DR-EcoScreen, MCF7AREc32, VM7Luc4E2) and the potential to induce oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway for a number of these elements. Nine TCEs, three rare-earth elements (REEs: Gd, Nd, Yb) and six less-studied TCEs (LSTCEs: Ga, Ge, In, Ta, Te, Tl), were selected for this study, along with three well-studied traditional metal contaminants (TMCs: As, Cd, Pb) for comparison.

View Article and Find Full Text PDF

Donor-Acceptor Functionalized Water-Soluble Metal-Organic Cages Showing an Excellent Synergistic Photothermal-Chemotherapy Effect.

Nano Lett

January 2025

School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

Water-soluble metal-organic cages (WSMOCs) show high potential as antitumor agents, while the targeted functionalization of WSMOCs toward enhanced antitumor performances is a challenging task. Herein, WSMOCs were functionalized with donor-acceptor (D-A) systems for synergistic photothermal-chemotherapy. Octahedral [ML] cages based on a 2,4,6-tri(2-pyridine-4-yl)-1,3,5-triazine (TPT) acceptor and M(bpy) (M = Pd for , Pt for ) nodes were functionalized with tetrathiafulvalene (TTF) to form and .

View Article and Find Full Text PDF

This paper presents the preparation of the parental experimental alloy, featuring a standard composition of TiYZrFeNiMn, via the vacuum induction melting technique. Subsequently, the TiYZrFeNiMn alloy, with an addition of 2 wt% Ni, underwent mechanical ball milling to yield a TiFe-based composite for experimental purposes. The results of the experimental tests indicate that the composite alloy's phase composition comprises the TiFe primary phase, with a minor quantity of ZrMn phase segregated on the surface of the primary TiFe phase, as well as Ni phase.

View Article and Find Full Text PDF

Born-Oppenheimer molecular dynamics (BOMD) simulations were performed to investigate the structure and dynamics of the first hydration shells of five trivalent lanthanide ions (Ln) at room temperature. These ions are relevant in various environments, including the bulk aqueous solution. Despite numerous studies, accurately classifying the molecular geometry of the first hydration sphere remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!