The initial employment of the fluorescent bridging ligand naphthalene-2,3-diol in 4f-metal coordination chemistry has provided access to a new family of Ln(III)8 clusters with a "Christmas-star" topology, single-molecule magnetism behavior, and ligand-centered emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic500806nDOI Listing

Publication Analysis

Top Keywords

fluorescent naphthalene
4
naphthalene diols
4
diols bridging
4
bridging ligands
4
ligands lniii
4
lniii cluster
4
cluster chemistry
4
chemistry synthetic
4
synthetic structural
4
structural magnetic
4

Similar Publications

Background: The rapid and sensitive detection of nitrite is important to human health protection due to its carcinogenic and teratogenic risks with excessive intake. The Griess assay is widely applied for the design of nitrite detection system. However, its relatively slow reaction kinetics and sole colorimetry mode might limit it's the sensitivity and practical application.

View Article and Find Full Text PDF

Designing the architecture of donor-acceptor (D-A) pairs is an effective strategy to tailor the electronic structure of conjugated macrocycles for optoelectronic devices. Herein, we present the synthesis of three D-A nanohoops ( = 7, 8, 9) containing a naphthalene diimide (NDI) unit as an acceptor and []cycloparaphenylenes ([]CPPs) moieties as donors. The D-A characteristics of were substantiated through absorption and fluorescence spectroscopic studies, electrochemical investigations, and computational analysis.

View Article and Find Full Text PDF

Solid-State Photoluminescence of Diphenylnaphthalenes Studied by Photophysical Measurements and Crystallographic Analysis.

Molecules

December 2024

Department of Chemistry, Faculty of Environment, Life, Natural Sciences and Technology, Okayama University, Okayama 700-8530, Japan.

Thanks to recent developments in spectrophotometric instruments, the spectra, quantum yields (Φ), and lifetimes () of photoluminescence from organic and inorganic compounds can be readily determined not only in solution but also in the solid state. It is known that naphthalene emits fluorescence in solution, but not in the solid state. In a previous paper, we reported that solid-state emission can be seen from biaryl compounds comprised of chromophores that show no emission in the solid state.

View Article and Find Full Text PDF

Pitfalls of Using ANS Dye Under Molecular Crowding Conditions.

Int J Mol Sci

December 2024

Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia.

The 1-anilino-8-naphthalenesulfonate (ANS) fluorescent dye is widely used in protein folding studies due to the significant increase in its fluorescence quantum yield upon binding to protein hydrophobic regions that become accessible during protein unfolding. However, when modeling cellular macromolecular crowding conditions in protein folding experiments in vitro using crowding agents with guanidine hydrochloride (GdnHCl) as the denaturant, the observed changes in ANS spectral characteristics require careful consideration. This study demonstrates that crowding agents can form clusters that interact differently with ANS.

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!