Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Current evidence strongly supports the central involvement of the human medial temporal lobes (MTL) in storing and retrieving memories for recently experienced events. However, a critical remaining question regards exactly how the hippocampus and surrounding cortex represents spatiotemporal context defining an event in memory. Competing accounts suggest that this process may be accomplished by the following: (1) an overall increase in neural similarity of representations underlying spatial and temporal context, (2) a differentiation of competing spatiotemporal representations, or (3) a combination of the two processes, with different subregions performing these two functions within the MTL. To address these competing proposals, we used high-resolution functional magnetic resonance imaging targeting the MTL along with a multivariate pattern similarity approach with 19 participants. While undergoing imaging, participants performed a task in which they retrieved spatial and temporal contextual representations from a recently learned experience. Results showed that successfully retrieving spatiotemporal context defining an episode involved a decrease in pattern similarity between putative spatial and temporal contextual representations in hippocampal subfields CA2/CA3/DG, whereas the parahippocampal cortex (PHC) showed the opposite pattern. These findings could not be accounted for by differences in univariate activations for complete versus partial retrieval nor differences in correlations for correct or incorrect retrieval. Together, these data suggest that the CA2/CA3/DG serves to differentiate competing contextual representations, whereas the PHC stores a comparatively integrated trace of scene-specific context, both of which likely play important roles in successful episodic memory retrieval.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019798 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5341-13.2014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!