Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function.

Endocrinology

Department of Anatomy and Neurobiology (Y.P., E.H.B., J.R.P., I.L.), University of Maryland-Baltimore, Baltimore, Maryland 21201; Division of Endocrinology, Metabolism, and Diabetes (M.L., P.A.), University of Michigan, Michigan 48105; and Department of Cell and Molecular Biology (M.C.W., N.G.), The Scripps Research Institute, San Diego, California 92037.

Published: July 2014

Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060179PMC
http://dx.doi.org/10.1210/en.2013-1985DOI Listing

Publication Analysis

Top Keywords

mutant pc1/3
8
pc1/3n222d mutant
8
cell biology
8
mutant mice
8
pc1/3-n222d protein
8
mutant
7
pc1/3
5
defective transport
4
obesity
4
transport obesity
4

Similar Publications

Modulation of PC1/3 activity by a rare double-site homozygous mutation.

Front Pediatr

October 2022

Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.

Objectives: Preprotein convertase 1/3 deficiency is a rare autosomal recessive disorder in which patients present with malabsorptive diarrhea and a series of symptoms of endocrine disorders such as polydipsia, reactive hypoglycemia, growth hormone deficiency, hypothyroidism, adrenal insufficiency, and early onset obesity. In its essence, pituitary hormone deficiency is caused by insufficient cleavage of pituitary prohormones. Here, we describe a female child with a rare double-site homozygous mutation in (Proprotein convertase subtilisin/kexin-type 1) gene, and thereby intend to investigate the relationship between these novel mutation sites and changes in protein synthesis and function.

View Article and Find Full Text PDF

PCSK1 encodes an enzyme required for prohormone maturation into bioactive peptides. A striking number of SNPs and rare mutations in PCSK1 are associated with a range of clinical phenotypes. Infants bearing two copies of a catalytically inactivating mutation, such as G209R, exhibit life-threatening chronic diarrhea and subsequently develop systemic endocrinopathies.

View Article and Find Full Text PDF

Obesity, POMC, and POMC-processing Enzymes: Surprising Results From Animal Models.

Endocrinology

December 2021

Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Peptides derived from proopiomelanocortin (POMC) are well-established neuropeptides and peptide hormones that perform multiple functions, including regulation of body weight. In humans and some animals, these peptides include α- and β-melanocyte-stimulating hormone (MSH). In certain rodent species, no β-MSH is produced from POMC because of a change in the cleavage site.

View Article and Find Full Text PDF

Pro-opiomelanocortin (POMC) neurons form an integral part of the central melanocortin system regulating food intake and energy expenditure. Genetic and pharmacological studies have revealed that defects in POMC synthesis, processing, and receptor signaling lead to obesity. It is well established that POMC is extensively processed by a series of enzymes, including prohormone convertases PC1/3 and PC2, and that genetic insufficiency of both PC1/3 and POMC is strongly associated with obesity risk.

View Article and Find Full Text PDF

Common mutations in the human prohormone convertase (PC)1/3 gene (PCKSI) are linked to increased risk of obesity. Previous work has shown that the rs6232 single-nucleotide polymorphism (N221D) results in slightly decreased activity, although whether this decrease underlies obesity risk is not clear. We observed significantly decreased activity of the N221D PC1/3 enzyme at the pH of the trans-Golgi network; at this pH, the mutant enzyme was less stable than wild-type enzyme.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!