Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.9-48.8% in air-water system when the U G was from 0.004 to 0.04 m/s, and by 65.1-512.6% in air-CMC solution system. The V d value for the membrane-tube sparger was improved by 40.0-86.3%. The value of K L a was increased by 52.8-84.4% in air-water system, and by 63.3-836.3% in air-CMC solution system. Empirical correlations of ε T, V d, and K L a were proposed, and well corresponding with the experimental data with the deviation of 10%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-014-1207-4DOI Listing

Publication Analysis

Top Keywords

membrane-tube sparger
16
mass transfer
12
perforated plate
12
plate sparger
12
hydrodynamics mass
8
internal-loop airlift
8
novel membrane-tube
8
sparger perforated
8
air-water system
8
air-cmc solution
8

Similar Publications

Two gas spargers, a novel membrane-tube sparger and a perforated plate sparger, were compared in terms of hydrodynamics and mass transfer (or oxygen transfer) performance in an internal-loop airlift bioreactor. The overall gas holdup ε T, downcomer liquid velocity V d, and volumetric mass transfer coefficient K L a were examined depending on superficial gas velocity U G increased in Newtonian and non-Newtonian fluids for the both spargers. Compared with the perforated plate sparger, the bioreactor with the membrane-tube sparger increased the values of ε T by 4.

View Article and Find Full Text PDF

Fumaric acid production in airlift loop reactor with porous sparger.

Appl Biochem Biotechnol

September 2008

Laboratory of Renewable Resources Engineering, 1295 Potter Center, Purdue University, West Lafayette, IN 47907, USA.

Airlift loop reactors with porous spargers were investigated and used in the process of fumaric acid production by Rhizopus oryzae ATCC 20344. In order to enhance oxygen mass transfer, which is very important for organic acid production, two kinds of porous spargers (stainless steel membrane tube and porcelain tube) were examined. Gas holdup, liquid circulation velocity, mixing time, bubble size, and bubble rise velocities were measured in a 50 L rectangular airlift loop reactor with different ratios of the cross-sectional area of the riser and downcomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!