Guard cells allow land plants to survive under restricted or fluctuating water availability. They control the exchange of gases between the external environment and the interior of the plant by regulating the aperture of stomatal pores in response to environmental stimuli such as light intensity, and are important regulators of plant productivity. Their turgor driven movements are under the control of a signalling network that is not yet fully characterised. A reporter gene fusion confirmed that the Arabidopsis APK1b protein kinase gene is predominantly expressed in guard cells. Infrared gas analysis and stomatal aperture measurements indicated that plants lacking APK1b are impaired in their ability to open their stomata on exposure to light, but retain the ability to adjust their stomatal apertures in response to darkness, abscisic acid or lack of carbon dioxide. Stomatal opening was not specifically impaired in response to either red or blue light as both of these stimuli caused some increase in stomatal conductance. Consistent with the reduction in maximum stomatal conductance, the relative water content of plants lacking APK1b was significantly increased under both well-watered and drought conditions. We conclude that APK1b is required for full stomatal opening in the light but is not required for stomatal closure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020820 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097161 | PLOS |
Tree Physiol
January 2025
Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China.
Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Xinjiang Production & State Key Laboratory Incubation Base for Conservation and Utilization of Bio-Resource in Tarim Basin, Alar 843300, China.
The transcription factors in the ABA Response Element Binding (AREB) protein family were differentially regulated under multiple stress conditions; however, functional analyses of AREB in Oliv. had not been conducted previously. In the present study, the comprehensive identification of the gene family and the function of in response to drought stress in were elucidated.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).
View Article and Find Full Text PDFPlant Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China. Electronic address:
Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!