Larvae from deep-sea methane seeps disperse in surface waters.

Proc Biol Sci

Oregon Institute of Marine Biology, University of Oregon, PO Box 5389, Charleston, OR 97420, USA.

Published: July 2014

Many species endemic to deep-sea methane seeps have broad geographical distributions, suggesting that they produce larvae with at least episodic long-distance dispersal. Cold-seep communities on both sides of the Atlantic share species or species complexes, yet larval dispersal across the Atlantic is expected to take prohibitively long at adult depths. Here, we provide direct evidence that the long-lived larvae of two cold-seep molluscs migrate hundreds of metres above the ocean floor, allowing them to take advantage of faster surface currents that may facilitate long-distance dispersal. We collected larvae of the ubiquitous seep mussel "Bathymodiolus" childressi and an associated gastropod, Bathynerita naticoidea, using remote-control plankton nets towed in the euphotic zone of the Gulf of Mexico. The timing of collections suggested that the larvae might disperse in the water column for more than a year, where they feed and grow to more than triple their original sizes. Ontogenetic vertical migration during a long larval life suggests teleplanic dispersal, a plausible explanation for the amphi-Atlantic distribution of "B." mauritanicus and the broad western Atlantic distribution of B. naticoidea. These are the first empirical data to demonstrate a biological mechanism that might explain the genetic similarities between eastern and western Atlantic seep fauna.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046398PMC
http://dx.doi.org/10.1098/rspb.2013.3276DOI Listing

Publication Analysis

Top Keywords

deep-sea methane
8
methane seeps
8
long-distance dispersal
8
western atlantic
8
larvae
5
larvae deep-sea
4
seeps disperse
4
disperse surface
4
surface waters
4
waters species
4

Similar Publications

The complete mitochondrial genome of the deep-sea methanotrophic sponges and : leveraging 'waste' in metagenomic data.

J Genet

January 2025

Programa de Pos-graduacao em Ciencias Biologicas (Genetica), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

A significant proportion of next-generation sequencing (NGS) data ends up not being used since they comprise information out-of-scope of the primary studies. This 'waste' of potential can be harnessed to explore organellar genomes, such as the mitochondrial DNA, and be used for evolutionary, conservation and biodiversity research. We present the complete mitochondrial genomes of the deep-sea methanotrophic sponges and (Demospongiae, Poecilosclerida) retrieved from previously published whole metagenome sequencing data.

View Article and Find Full Text PDF

Phenotypic plasticity of symbiotic organ highlight deep-sea mussel as model species in monitoring fluid extinction of deep-sea methane hydrate.

Sci Total Environ

December 2024

Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Laoshan Laboratory, Qingdao 266071, China. Electronic address:

Methane hydrates stored in cold seeps are an important source of energy and carbon for both the endemic chemosynthetic community and humanity. However, the methane fluids may cease and even stop naturally or anthropogenically, calling for a thorough evaluation of its potential impact on the endemic species and local chemosynthetic ecosystems. As one dominant megafauna in cold seeps, some of the deep-sea mussels rely on methanotrophic endosymbionts for nutrition and therefore could serve as a promising model in monitoring the dynamic changes of methane hydrate.

View Article and Find Full Text PDF

Caymanostellidae is a group of rarely collected and morphologically unusual sea stars that have been exclusively encountered on wood falls in the deep sea. There are currently three genera and seven species described, occurring in the Atlantic, Pacific and Indian Oceans with a depth range between 418 and 6780 m. Three new species are here described from specimens collected from wood falls in multiple localities across the Pacific margin of Costa Rica and near the Gulf of California (Mexico): Caymanostella scrippscognaticausa sp.

View Article and Find Full Text PDF
Article Synopsis
  • Wood-fall micro-ecosystems in the deep ocean were studied to understand the diversity and assembly of bacteria and fungi and their biogeochemical functions.
  • Results indicated that habitat heterogeneity influenced microbial communities, with bacterial communities in specific regions being affected by dispersal limitations while fungi were influenced by homogenizing dispersal.
  • The study concluded that bacteria had a greater potential for key metabolic processes like sulfur and methane cycling, while certain fungi showed a strong ability to degrade lignocellulose, highlighting the complex interactions in these micro-ecosystems.
View Article and Find Full Text PDF

Sediment plays a pivotal role in deep-sea ecosystems by providing habitats for a diverse range of microorganisms and facilitates the cycling processes of carbon, sulfur and nitrogen. Beyond the normal seafloor (NS), distinctive geographical features such as cold seeps (CS) and hydrothermal vent (HV) are recognized as life oases harboring highly diverse microbial communities. A global atlas of microorganisms can reveal the notable association between geological processes and microbial colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!