Habitat connectivity is considered to have an important role on the persistence of populations in the face of habitat fragmentation, in particular, for species with conservation concern. However, it can also impose indirect negative effects on native species through the spread of invasive species. Here, we investigated direct and indirect effects of habitat connectivity on populations of invasive bullfrogs and native wrinkled frogs and how these effects are modified by the presence of common carp, a resident shared predator, in a farm pond system in Japan. The distribution pattern analysis using a hierarchical Bayesian modelling indicated that bullfrogs had negative effects on wrinkled frogs, and that these negative effects were enhanced with increasing habitat connectivity owing to the metapopulation structure of bullfrogs. The analysis also suggested that common carp mitigated these impacts, presumably owing to a top-down trophic cascade through preferential predation on bullfrog tadpoles. These presumed interspecific interactions were supported by evidence from laboratory experiments, i.e. predation by carp was more intense on bullfrog tadpoles than on wrinkled frog tadpoles owing to the difference in refuge use. Our results indicate that metacommunity perspectives could provide useful insights for establishing effective management strategies of invasive species living in patchy habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046391PMC
http://dx.doi.org/10.1098/rspb.2013.2621DOI Listing

Publication Analysis

Top Keywords

habitat connectivity
16
negative effects
12
resident shared
8
invasive bullfrogs
8
bullfrogs native
8
invasive species
8
wrinkled frogs
8
common carp
8
bullfrog tadpoles
8
habitat
5

Similar Publications

Stay Connected to Be Diverse!

Glob Chang Biol

January 2025

Aquatic Ecology, Department Biology, Ludwig-Maximilians - University Munich, München, Germany.

Plankton biodiversity is crucial for the functioning of aquatic ecosystems, influencing nutrient cycling, food web dynamics, and carbon storage. Global change and habitat destruction disrupt these ecosystems, reducing species diversity and ecosystem resilience. Connectivity between aquatic habitats supports biodiversity by enabling species migration, genetic diversity, and recovery from disturbances.

View Article and Find Full Text PDF

Current estimates of wetland contributions to the global methane budget carry high uncertainty, particularly in accurately predicting emissions from high methane-emitting wetlands. Microorganisms drive methane cycling, but little is known about their conservation across wetlands. To address this, we integrate 16S rRNA amplicon datasets, metagenomes, metatranscriptomes, and annual methane flux data across 9 wetlands, creating the Multi-Omics for Understanding Climate Change (MUCC) v2.

View Article and Find Full Text PDF

Lake Biwa, with its long geological history, has given rise to many endemic species, but only four endemic parasites are known from Lake Biwa and connected water areas. They are considered to have co-evolved with their endemic host species or to have become adapted to the pelagic ecosystem unique to Lake Biwa. The number of parasite species introduced into this water system is rising, facilitated not only by the introduction of new species but also through genetic analyses that have revealed new information about previously known species.

View Article and Find Full Text PDF

In the face of unabated urban expansion, understanding the intrinsic characteristics of landscape structure is pertinent to preserving ecological diversity and managing the supply of ecosystem services. This study integrates machine-learning-based geospatial and landscape ecological techniques to assess the dynamics of landscape structure in cities of the rainforest (Akure and Owerri) and Guinea savanna (Makurdi and Minna) ecological regions of Nigeria between 1986 and 2022. Supervised classification using the random forest (RF) machine-learning classifier was performed on Landsat images on the Google Earth Engine (GEE) platform, and landscape metrics were calculated with FRAGSTATS to assess landscape composition, configuration, and connectivity.

View Article and Find Full Text PDF

The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!