Electrocatalytic oxygen reduction reaction on perovskite oxides: series versus direct pathway.

Chemphyschem

Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé, UMR 7515 CNRS-University of Strasbourg, 25 rue Becquerel 67087 Strasbourg Cedex 2 (France), Fax: (+33) 03-68-85-27-61.

Published: July 2014

The mechanism of the oxygen reduction reaction (ORR) on LaCoO(3) and La(0.8)Sr(0.2)MnO(3) perovskite oxides is studied in 1 M NaOH by using the rotating ring disc electrode (RRDE) method. By combining experimental studies with kinetic modeling, it was demonstrated that on perovskite, as well as on perovskite/carbon electrodes, the ORR follows a series pathway through the intermediate formation of hydrogen peroxide. The escape of this intermediate from the electrode strongly depends on: 1) The loading of perovskite; high loadings lead to an overall 4 e(-) oxygen reduction due to efficient hydrogen peroxide re-adsorption on the active sites and its further reduction. 2) The addition of carbon to the catalytic layer, which affects both the utilization of the perovskite surface and the production of hydrogen peroxide. 3) The type of oxide; La(0.8)Sr(0.2)MnO(3) displays higher (compared to LaCoO(3)) activity in the reduction of oxygen to hydrogen peroxide and in the reduction/oxidation of the latter.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201402022DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
oxygen reduction
12
reduction reaction
8
perovskite oxides
8
reduction
5
perovskite
5
electrocatalytic oxygen
4
reaction perovskite
4
oxides series
4
series versus
4

Similar Publications

Introduction: Loss of skin integrity due to a wound or disease can lead to severe disability or even life threat. The highly expressed microRNAs in the skin are of great significance for skin development. The investigation purposed to explore the effect and mechanism of miR-211 on inflammation, oxidative stress and migration in keratinocytes.

View Article and Find Full Text PDF

Modulation of stomatal development and movement is a promising approach for creating water-conserving plants. Here, we identified and characterized the PagHCF106 gene of poplar (Populus alba × Populus glandulosa). The PagHCF106 protein localized predominantly to the chloroplast, and the PagHCF106 gene exhibited tissue-specific expression pattern.

View Article and Find Full Text PDF

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Oxidative stress is a prominent feature of Alzheimer's disease. Within this context, cholesterol undergoes oxidation, producing the pro-inflammatory product 7-ketocholesterol (7-KC). In this study, we observe elevated levels of 7-KC in the brains of the 3xTg mouse model of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!