A novel method to produce porous pressure-sensitive rubber is developed. For the controlled size distribution of embedded micropores, solution-based procedures using reverse micelles are adopted. The piezosensitivity of the pressure sensitive rubber is significantly increased by introducing micropores. Using this method, wearable human-machine interfaces are fabricated, which can be applied to the remote control of a robot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201401364 | DOI Listing |
Soft Matter
January 2025
School of Materials Engineering, Purdue University, 701 West Stadium Ave, West Lafayette, IN 47907, USA.
Within coating formulations, microcapsules serve as vehicles for delivering compounds like catalysts and self-healing agents. Designing microcapsules with precise mechanical characteristics is crucial to ensure their contents' timely release and minimize residual shell fragments, thereby avoiding adverse impacts on the coating quality. With these constraints in mind, we explored the use of 1 cSt PDMS oil as a diluent (porogen) in trimethylolpropane trimethacrylate (TMPTMA)-based to fabricate microcapsules with customized mechanical properties and submicrometer debris size after shell breakup that can encapsulate a wide range of compounds.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China; State Silica-based Materials Laboratory of Anhui Province, Bengbu 233000, PR China. Electronic address:
Flexible, stable, and highly sensitive pressure sensors have garnered significant interest for their potential applications in wearable electronics and human-computer interaction. However, pressure sensor substrates prepared by electrospinning currently face challenges related to inadequate mechanical properties and low conductivity. Therefore, fabricating films with high flexibility, excellent mechanical properties, and sensing capabilities is still a great challenge.
View Article and Find Full Text PDFVet Sci
December 2023
Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, 70100 Bari, Italy.
The aim of this study was to objectively evaluate lameness in dogs affected by a unilateral cranial cruciate ligament rupture (CrCLR) treated with porous tibial tuberosity advancement before surgery and at three different timepoints after surgery, using the GAITRite system (version 4.9Wr), a pressure-sensitive walkway system that is able to calculate several spatiotemporal gait parameters simultaneously for each limb. The dogs walked on the pressure-sensitive walkway before (T0) and 30 (T1), 90 (T2), and 120 (T3) days after surgery.
View Article and Find Full Text PDFSmall
February 2024
Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.
Sci Adv
September 2023
Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan.
Multipoint 3-axis tactile pressure sensing by a high-resolution and sensitive optical system provides rich information on surface pressure distribution and plays an important role in a variety of human interaction-related and robotics applications. However, the optical system usually has a bulky profile, which brings difficulties to sensor mounting and system integration. Here, we show a construction of thin-film and flexible multipoint 3-axis pressure sensor by optical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!