Compact microfluidic device for rapid concentration of PET tracers.

Lab Chip

Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA.

Published: July 2014

HPLC purification and reformulation of positron emission tomography (PET) tracers can lead to significant dilution of the final product, making it difficult to produce a sufficiently high radioactivity concentration for some applications (e.g. small animal imaging, in vitro assays, and labelling of proteins with prosthetic groups). This is especially true for molecules with lengthy or low-yield syntheses. Starting the synthesis with more radioactivity increases the final radioactivity concentration but increases hazards and complexity of handling. An alternative is to concentrate the final product by a process such as rotary evaporation prior to downstream use. Because a rotovap requires significant space within a hot cell that could be put to more productive use, we developed a compact microfluidic system for concentration of PET tracers. This system also provides advantages in terms of repeatability, interfacing and potential for automation. We present here the design and performance characterization of the system, and demonstrate the concentration of several tracers in aqueous-based HPLC mobile phases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465334PMC
http://dx.doi.org/10.1039/c4lc00286eDOI Listing

Publication Analysis

Top Keywords

pet tracers
12
compact microfluidic
8
concentration pet
8
final product
8
radioactivity concentration
8
concentration
5
microfluidic device
4
device rapid
4
rapid concentration
4
tracers
4

Similar Publications

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

As the main inhibitory neurotransmission system, the GABAergic system poses an interesting yet underutilized target for molecular brain imaging. While PET imaging of postsynaptic GABAergic neurons has been accomplished using radiolabeled benzodiazepines targeting the GABA receptor, the development of presynaptic radioligands targeting GABA transporter 1 (GAT1) has been unsuccessful thus far. Therefore, we developed a novel GAT1-addressing radioligand and investigated its applicability as a PET tracer in rodents.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and a sizable fraction of the DLBCL patients presents with advanced, relapsed, and refractory disease, demonstrating poor response to standard chemotherapy regimens. Radioimmunotherapy (RIT) has shown to be clinically effective in refractory DLBCL. We present the case of a patient with DLBCL with [18F]FDG-avid widespread skeletal as well as splenic involvement as poor prognostic extranodal disease on FDG PET/CT.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!