The cell wall pectic polymer rhamnogalacturonan-II is required for proper pollen tube elongation: implications of a putative sialyltransferase-like protein.

Ann Bot

Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV) EA4358, Normandy University, University of Rouen, Institut de Recherche et d'Innovation Biomédicale, 76821 Mont-Saint-Aignan, France

Published: October 2014

AI Article Synopsis

  • RG-II is a key component of plant cell walls, mostly known for its dimer formation through borate diester cross-linking, but its biosynthesis, particularly in Arabidopsis thaliana pollen tubes, remains poorly understood.
  • The research examined two mutant lines of Arabidopsis to understand the role of the sialyltransferase-like protein SIA2 in pollen tube growth and germination, revealing that mutations might be lethal and result in poor pollen performance.
  • Results indicated significant delays in germination and abnormal pollen tube development in mutants, suggesting that RG-II and SIA2 are crucial for normal reproductive function in plants.

Article Abstract

Background And Aims: Rhamnogalacturonan-II (RG-II) is one of the pectin motifs found in the cell wall of all land plants. It contains sugars such as 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha) and 2-keto-3-deoxy-d-manno-octulosonic acid (Kdo), and within the wall RG-II is mostly found as a dimer via a borate diester cross-link. To date, little is known regarding the biosynthesis of this motif. Here, after a brief review of our current knowledge on RG-II structure, biosynthesis and function in plants, this study explores the implications of the presence of a Golgi-localized sialyltransferase-like 2 (SIA2) protein that is possibly involved in the transfer of Dha or Kdo in the RG-II of Arabidopsis thaliana pollen tubes, a fast-growing cell type used as a model for the study of cell elongation.

Methods: Two heterozygous mutant lines of arabidopsis (sia2-1+/- and qrt1 × sia2-2+/-) were investigated. sia2-2+/- was in a quartet1 background and the inserted T-DNA contained the reporter gene β-glucuronidase (GUS) under the pollen-specific promoter LAT52. Pollen germination and pollen tube phenotype and growth were analysed both in vitro and in vivo by microscopy.

Key Results: Self-pollination of heterozygous lines produced no homozygous plants in the progeny, which may suggest that the mutation could be lethal. Heterozygous mutants displayed a much lower germination rate overall and exhibited a substantial delay in germination (20 h of delay to reach 30 % of pollen grain germination compared with the wild type). In both lines, mutant pollen grains that were able to produce a tube had tubes that were either bursting, abnormal (swollen or dichotomous branching tip) or much shorter compared with wild-type pollen tubes. In vivo, mutant pollen tubes were restricted to the style, whereas the wild-type pollen tubes were detected at the base of the ovary.

Conclusions: This study highlights that the mutation in arabidopsis SIA2 encoding a sialyltransferase-like protein that may transfer Dha or Kdo on the RG-II motif has a dramatic effect on the stability of the pollen tube cell wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4195553PMC
http://dx.doi.org/10.1093/aob/mcu093DOI Listing

Publication Analysis

Top Keywords

pollen tubes
16
cell wall
12
pollen tube
12
pollen
10
sialyltransferase-like protein
8
transfer dha
8
dha kdo
8
kdo rg-ii
8
mutant pollen
8
wild-type pollen
8

Similar Publications

Extracellular AMP Inhibits Pollen Tube Growth in via Disrupted Calcium Gradient and Disorganized Microfilaments.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.

View Article and Find Full Text PDF

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Phosphatidic Acid Signaling in Modulating Plant Reproduction and Architecture.

Plant Commun

December 2024

Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA. Electronic address:

Article Synopsis
  • Phosphatidic acid (PA) is a type of signaling lipid in plants that plays a crucial role in responding to environmental stresses and regulating key biological processes.
  • Research on mutants lacking PA's metabolizing enzymes and various analytical techniques has shown that PA is essential in various reproductive functions, including pollen tube development and seed formation.
  • The study will review these findings to better understand how PA influences plant reproduction and structure, while also suggesting areas for future research to further clarify its mechanisms of action.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!