GSTs represent a superfamily of multifunctional proteins which play crucial roles in detoxification processes and secondary metabolism. Instead of promoting the conjugation of glutathione to acceptor molecules as do most GSTs, members of the Lambda class (GSTLs) catalyse deglutathionylation reactions via a catalytic cysteine residue. Three GSTL genes (Pt-GSTL1, Pt-GSTL2 and Pt-GSTL3) are present in Populus trichocarpa, but two transcripts, differing in their 5' extremities, were identified for Pt-GSTL3. Transcripts for these genes were primarily found in flowers, fruits, petioles and buds, but not in leaves and roots, suggesting roles associated with secondary metabolism in these organs. The expression of GFP-fusion proteins in tobacco showed that Pt-GSTL1 is localized in plastids, whereas Pt-GSTL2 and Pt-GSTL3A and Pt-GSTL3B are found in both the cytoplasm and the nucleus. The resolution of Pt-GSTL1 and Pt-GSTL3 structures by X-ray crystallography indicated that, although these proteins adopt a canonical GST fold quite similar to that found in dimeric Omega GSTs, their non-plant counterparts, they are strictly monomeric. This might explain some differences in the enzymatic properties of both enzyme types. Finally, from competition experiments between aromatic substrates and a fluorescent probe, we determined that the recognition of glutathionylated substrates is favoured over non-glutathionylated forms.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BJ20140390DOI Listing

Publication Analysis

Top Keywords

populus trichocarpa
8
secondary metabolism
8
structural enzymatic
4
enzymatic insights
4
insights lambda
4
lambda glutathione
4
glutathione transferases
4
transferases populus
4
trichocarpa monomeric
4
monomeric enzymes
4

Similar Publications

A dihydrochalcone-specific O-methyltransferase from leaf buds of Populus trichocarpa implicated in bud resin formation.

J Exp Bot

January 2025

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, Canada.

Production of secreted leaf bud resin is a mechanism for temperate trees to protect dormant leaf buds against frost damage, dehydration, and insect herbivory. Bud resins contain a wide variety of special metabolites including terpenoids, benzenoids, and phenolics. The leaf bud resins of Populus trichocarpa and P.

View Article and Find Full Text PDF

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Poplar Leaf Bud Resin Metabolomics: Seasonal Profiling of Leaf Bud Chemistry in Populus trichocarpa Provides Insight Into Resin Biosynthesis.

Plant Cell Physiol

December 2024

Centre for Forest Biology & Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia, V8P 5C2, Canada.

Trees in the genus Populus synthesize sticky and fragrant resins to protect dormant leaf buds during winter. These resins contain diverse phenolic metabolites, in particular hydroxycinnamate esters and methylated flavonoids. P.

View Article and Find Full Text PDF

The ionome represents elemental composition in plant tissues and can be an indicator of nutrient status as well as overall plant performance. Thus, identifying genetic determinants governing elemental uptake and storage is an important goal for breeding and engineering biomass feedstocks with improved performance. In this study, we coupled high-throughput ionome characterization of leaf tissues with high-resolution genome-wide association studies (GWAS) to uncover genetic loci that modulate ionomic composition in leaves of poplar ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!