Thiolases are enzymes involved in lipid metabolism. Thiolases remove the acetyl-CoA moiety from 3-ketoacyl-CoAs in the degradative reaction. They can also catalyze the reverse Claisen condensation reaction, which is the first step of biosynthetic processes such as the biosynthesis of sterols and ketone bodies. In human, six distinct thiolases have been identified. Each of these thiolases is different from the other with respect to sequence, oligomeric state, substrate specificity and subcellular localization. Four sequence fingerprints, identifying catalytic loops of thiolases, have been described. In this study genome searches of two mycobacterial species (Mycobacterium tuberculosis and Mycobacterium smegmatis), were carried out, using the six human thiolase sequences as queries. Eight and thirteen different thiolase sequences were identified in M. tuberculosis and M. smegmatis, respectively. In addition, thiolase-like proteins (one encoded in the Mtb and two in the Msm genome) were found. The purpose of this study is to classify these mostly uncharacterized thiolases and thiolase-like proteins. Several other sequences obtained by searches of genome databases of bacteria, mammals and the parasitic protist family of the Trypanosomatidae were included in the analysis. Thiolase-like proteins were also found in the trypanosomatid genomes, but not in those of mammals. In order to study the phylogenetic relationships at a high confidence level, additional thiolase sequences were included such that a total of 130 thiolases and thiolase-like protein sequences were used for the multiple sequence alignment. The resulting phylogenetic tree identifies 12 classes of sequences, each possessing a characteristic set of sequence fingerprints for the catalytic loops. From this analysis it is now possible to assign the mycobacterial thiolases to corresponding homologues in other kingdoms of life. The results of this bioinformatics analysis also show interesting differences between the distributions of M. tuberculosis and M. smegmatis thiolases over the 12 different classes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2014.03.003DOI Listing

Publication Analysis

Top Keywords

thiolase-like proteins
16
thiolases thiolase-like
12
thiolase sequences
12
thiolases
10
phylogenetic relationships
8
mycobacterium tuberculosis
8
tuberculosis mycobacterium
8
mycobacterium smegmatis
8
sequence fingerprints
8
catalytic loops
8

Similar Publications

Comparative Gene Expression Profiles of and Promastigotesa.

Turkiye Parazitol Derg

June 2021

Ege Üniversitesi Tıp Fakültesi, Parazitoloji Anabilim Dalı, İzmir, Türkiye

Objective: This study aimed to determine the differences between the gene expression profiles of and promastigotes through comparative analysis of gene expressions.

Methods: Cell culture of (MHOM/IL/80) and (MHOM/MA/67/ITMAP/263) cell lines was performed. Afterwards, total RNA isolation and cDNA synthesis were performed and fold changes in the expression levels of 30 genes that play a role in metabolic pathways and nucleic acid synthesis and co-expressed in two species were evaluated by reverse transcriptase polymerase chain reaction.

View Article and Find Full Text PDF

Cuticular wax is closely related to plant resistance to abiotic stress. 3-Ketoacyl-CoA synthase (KCS) catalyzes the biosynthesis of very-long-chain fatty acid (VLCFA) wax precursors. In this study, a novel family gene was isolated from Newhall navel orange and subsequently named .

View Article and Find Full Text PDF

Although melatonin has been reported to play an important role in regulating metabolic events under adverse stresses, its underlying mechanisms on germination in aged seeds remain unclear. This study was conducted to investigate the effect of melatonin priming (MP) on embryos of aged oat seeds in relation to germination, ultrastructural changes, antioxidant responses, and protein profiles. Proteomic analysis revealed, in total, 402 differentially expressed proteins (DEPs) in normal, aged, and aged + MP embryos.

View Article and Find Full Text PDF

Crystal structure of a thiolase from Escherichia coli at 1.8 Å resolution.

Acta Crystallogr F Struct Biol Commun

July 2016

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560 012, India.

Thiolases catalyze the Claisen condensation of two acetyl-CoA molecules to give acetoacetyl-CoA, as well as the reverse degradative reaction. Four genes coding for thiolases or thiolase-like proteins are found in the Escherichia coli genome. In this communication, the successful cloning, purification, crystallization and structure determination at 1.

View Article and Find Full Text PDF

Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2-thiolase-like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2-Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!