We studied in vitro differentiation of pancreatic stem and progenitor cells into insulin secreting cells in the model of streptozotocin-induced diabetes in C57Bl/6 mice. Streptozotocin was shown to increase the population of pancreatic oligopotent β-cell precursors (CD45(-), TER119(-), CD133(+), and CD49f(low)) and did not affect multipotent (stem) progenitor cells (CD45(-), TER119(-), CD17(-), CD309(-)). During long-term culturing, diabetic multipotent progenitor cells showed high capacity for self-renewal. A population of dithizone-positive (insulin secreting cells) mononuclear cells was obtained releasing insulin after prolonged culturing in suspension enriched with diabetic CD45(-), TER119(-), CD17(-), and CD309(-) cells. The rate of generation of "new" insulin-producing cells and insulin release in the samples of experimental group considerably exceeded activity of the corresponding processes in the control group.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-014-2434-zDOI Listing

Publication Analysis

Top Keywords

stem progenitor
12
insulin secreting
12
secreting cells
12
progenitor cells
12
cd45- ter119-
12
cells
9
differentiation pancreatic
8
pancreatic stem
8
cells insulin
8
ter119- cd17-
8

Similar Publications

During nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination.

View Article and Find Full Text PDF

Many inflammatory stimuli can induce progenitor cells in the bone marrow to produce increased numbers of myeloid cells as part of the process of emergency myelopoiesis. These events are associated with innate training and can have long-term impacts on hematopoietic stem and progenitor cell (HSPC) development but can also compromise their function. While many cytokines support emergency myelopoiesis, less is known about the mechanisms that temper these events.

View Article and Find Full Text PDF

Endometrial injury caused by repeated uterine procedures, infections, inflammation, or uterine artery dysfunction can deplete endometrial stem/progenitor cells and impair regeneration, thereby diminishing endometrial receptivity and evidently lowering the live birth, clinical pregnancy, and embryo implantation rates. Currently, safe and effective clinical treatment methods or gene-targeted therapies are unavailable, especially for severe endometrial injury. Umbilical cord mesenchymal stem cells and their extracellular vesicles are characterized by their simple collection, rapid proliferation, low immunogenicity, and tumorigenicity, along with their involvement in regulating angiogenesis, immune response, cell apoptosis and proliferation, inflammatory response, and fibrosis, Therefore, these cells and vesicles hold broad potential for application in endometrial repair.

View Article and Find Full Text PDF

Molecular dynamics of chemotactic signalling orchestrates dental pulp stem cell fibrosis during aging.

Front Cell Dev Biol

January 2025

Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China.

Aging often triggers dental pulp fibrosis, resulting in clinical repercussions such as increased susceptibility to dental infections, compromised tooth vitality, and reduced responsiveness to dental interventions. Despite its prevalence, the precise molecular mechanisms underlying this condition remains unclear. Leveraging single-cell transcriptome analysis from both our own and publicly available datasets, we identified Ccrl2 macrophages as particularly vulnerable during the early stages of aging.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key cellular components of the immune system and perform critical functions in innate and acquired immunity. In mammals, it is generally believed that DCs originate exclusively from hematopoietic stem cells (HSCs). Using a temporal-spatial resolved fate-mapping system, here we show that in zebrafish, DCs arise from two sources: dorsal aorta-born endothelium-derived hematopoietic progenitors (EHPs) and HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!