Density functional study on the structural, electronic, and magnetic properties of 3d transition-metal-doped Au5 clusters.

J Phys Chem A

School of Physics and Chemistry, and §Key Laboratory of Advanced Scientific Computation, Xihua University, Chengdu 610039, China.

Published: June 2014

Density functional calculations have been performed for the structural, electronic, and magnetic properties of Au5M (M = Sc-Zn) clusters. Geometry optimizations indicate that the M atoms in low-energy Au5M isomers prefer to occupy the most highly coordinated position. The ground-state clusters except Au5Sc possess a planar structure. The vibrational spectra of the doped clusters are completely different from that of a pure gold cluster. The relative stability and chemical activity are investigated through the averaged binding energy and energy gap for the most stable Au5M clusters. It is found that the impurity atoms (not including the Zn atom) can enhance the thermal stability of the host cluster. The chemical activity of Au5M clusters is higher than that of the Au6 cluster. The calculated energy gaps are in accord with available approximate experimental data. The vertical ionization potential, the electron affinity, and photoelectron spectrum are computed and simulated theoretically for all of the ground-state clusters. The magnetism analyses show that the magnetic moment of these Au5M clusters varies from 0 to 5 μB by substituting a Au atom in a Au6 cluster with various M atoms and is mainly localized on the M atom for M = Ti-Ni.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp503391pDOI Listing

Publication Analysis

Top Keywords

au5m clusters
12
density functional
8
structural electronic
8
electronic magnetic
8
magnetic properties
8
clusters
8
ground-state clusters
8
chemical activity
8
au6 cluster
8
au5m
5

Similar Publications

Density functional study on the structural, electronic, and magnetic properties of 3d transition-metal-doped Au5 clusters.

J Phys Chem A

June 2014

School of Physics and Chemistry, and §Key Laboratory of Advanced Scientific Computation, Xihua University, Chengdu 610039, China.

Density functional calculations have been performed for the structural, electronic, and magnetic properties of Au5M (M = Sc-Zn) clusters. Geometry optimizations indicate that the M atoms in low-energy Au5M isomers prefer to occupy the most highly coordinated position. The ground-state clusters except Au5Sc possess a planar structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!