Purpose: Speech acoustic characteristics of children with cerebral palsy (CP) were examined with a multiple speech subsystems approach; speech intelligibility was evaluated using a prediction model in which acoustic measures were selected to represent three speech subsystems.
Method: Nine acoustic variables reflecting different subsystems, and speech intelligibility, were measured in 22 children with CP. These children included 13 with a clinical diagnosis of dysarthria (speech motor impairment [SMI] group) and 9 judged to be free of dysarthria (no SMI [NSMI] group). Data from children with CP were compared to data from age-matched typically developing children.
Results: Multiple acoustic variables reflecting the articulatory subsystem were different in the SMI group, compared to the NSMI and typically developing groups. A significant speech intelligibility prediction model was obtained with all variables entered into the model (adjusted R2 = .801). The articulatory subsystem showed the most substantial independent contribution (58%) to speech intelligibility. Incremental R2 analyses revealed that any single variable explained less than 9% of speech intelligibility variability.
Conclusions: Children in the SMI group had articulatory subsystem problems as indexed by acoustic measures. As in the adult literature, the articulatory subsystem makes the primary contribution to speech intelligibility variance in dysarthria, with minimal or no contribution from other systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4192090 | PMC |
http://dx.doi.org/10.1044/2014_JSLHR-S-13-0292 | DOI Listing |
Brain Sci
December 2024
Faculty of Biomedical Engineering, Department of Medical Informatics and Aritificial Intelligence, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland.
Background/objectives: 22q11.2 microdeletion syndrome (22q11DS) is a genetic disease caused by aberration of chromosome 22 that results in some phenotypic features and developmental disorders. This paper presents a cross-sectional study on speech and communication of Polish children with 22q11DS.
View Article and Find Full Text PDFInt J Audiol
January 2025
Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, Netherlands.
Objective: Measuring listening effort using pupillometry is challenging in cochlear implant (CI) users. We assess three validated speech tests (Matrix, LIST, and DIN) to identify the optimal speech material for measuring peak-pupil-dilation (PPD) in CI users as a function of signal-to-noise ratio (SNR).
Design: Speech tests were administered in quiet and two noisy conditions, namely at the speech recognition threshold (0 dB re SRT), i.
IEEE/ACM Trans Audio Speech Lang Process
February 2024
CRSS: Center for Robust Speech Systems; Cochlear Implant Processing Laboratory (CILab), Department of Electrical and Computer Engineering, University of Texas at Dallas, USA.
The presence of background noise or competing talkers is one of the main communication challenges for cochlear implant (CI) users in speech understanding in naturalistic spaces. These external factors distort the time-frequency (T-F) content including magnitude spectrum and phase of speech signals. While most existing speech enhancement (SE) solutions focus solely on enhancing the magnitude response, recent research highlights the importance of phase in perceptual speech quality.
View Article and Find Full Text PDFNatl J Maxillofac Surg
November 2024
Department of Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Wardha, Maharashtra, India.
Background: Lip carcinomas account for 23.6% to 30% of tumors affecting the oral cavity. Lip reconstruction aims to achieve a competent oral sphincter with a good cosmetic appearance while avoiding microstomia.
View Article and Find Full Text PDFPerspect ASHA Spec Interest Groups
December 2024
DeVault Otologic Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis.
Purpose: Cochlear implants (CIs) have improved the quality of life for many children with severe-to-profound sensorineural hearing loss. Despite the reported CI benefits of improved speech recognition, speech intelligibility, and spoken language processing, large individual differences in speech and language outcomes are still consistently reported in the literature. The enormous variability in CI outcomes has made it challenging to predict which children may be at high risk for limited benefits and how potential risk factors can be improved with interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!