Introduction: The RNA-binding protein hnRNPA2 (HNRNPA2B1) is upregulated in cancer, where it controls alternative pre-mRNA splicing of cancer-relevant genes. Cytoplasmic hnRNPA2 is reported in aggressive cancers, but is functionally uncharacterized. We explored the role of hnRNPA2 in prostate cancer (PCa).
Methods: hnRNPA2 function/localization/expression in PCa was determined using biochemical approaches (colony forming/proliferation/luciferase reporter assays/flow cytometry/immunohistocytochemistry). Binding of hnRNPA2 within cancer-relevant 3'-UTR mRNAs was identified by bioinformatics.
Results: RNAi-mediated knockdown of hnRNPA2 reduced colony forming and proliferation, while hnRNPA2 overexpression increased proliferation of PCa cells. Nuclear hnRNPA2 is overexpressed in high-grade clinical PCa, and is also observed in the cytoplasm in some cases. Ectopic expression of a predominantly cytoplasmic variant hnRNPA2-ΔRGG also increased PCa cell proliferation, suggesting that cytoplasmic hnRNPA2 may also be functionally relevant in PCa. Consistent with its known cytoplasmic roles, hnRNPA2 was associated with 3'-UTR mRNAs of several cancer-relevant mRNAs including β-catenin (CTNNB1). Both wild-type hnRNPA2 and hnRNPA2-ΔRGG act on CTNNB1 3'-UTR mRNA, increasing endogenous CTNNB1 mRNA expression and β-catenin protein expression and nuclear localization.
Conclusion: Nuclear and cytoplasmic hnRNPA2 are present in PCa and appear to be functionally important. Cytoplasmic hnRNPA2 may affect the cancer cell phenotype through 3'-UTR mRNA-mediated regulation of β-catenin expression and other cancer-relevant genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156506 | PMC |
http://dx.doi.org/10.4161/rna.28800 | DOI Listing |
Proc Natl Acad Sci U S A
December 2024
Structural Biology Brussels, Bio-engineering Department, Vrije Universiteit Brussel, Elsene 1050, Belgium.
Perioperative neurocognitive disorders (PND) is common in aged mild cognitive impairment (MCI) patients and can accelerate the progression to dementia. This process involves heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1)-mediated aggregates of stress granules (SGs), while RUVBL2 influences the dynamics of these SGs. Our research explored a new target for modulating hnRNAPA2/B1-SGs dynamics to accelerate their disassembly and potentially delay MCI progression due to PND.
View Article and Find Full Text PDFJ Proteomics
June 2024
Laboratory of Molecular Pathology, Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan; Department of Functions of Biological-defense Genome, Hiroshima University Graduate School, Hiroshima, Japan; Department of Physics, Graduate school of Science, Tohoku University, Miyagi, Japan; Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Electronic address:
Recent advancements in proteomics technologies using formalin-fixed paraffin-embedded (FFPE) samples have significantly advanced biomarker discovery. Yet, the effects of varying sample preparation protocols on proteomic analyses remain poorly understood. We analyzed mouse liver FFPE samples that varied in fixatives, fixation duration, and storage temperature using LC/MS.
View Article and Find Full Text PDFHarmful stimuli trigger mutations lead to uncontrolled accumulation of hnRNPA2/B1 in the cytoplasm, exacerbating neuronal damage. Kapβ2 mediates the bidirectional transport of most substances between the cytoplasm and the nucleus. Kapβ2 guides hnRNPA2/B1 back into the nucleus and restores its function, alleviating related protein toxicity.
View Article and Find Full Text PDFJ Virol
November 2023
Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
HIV-infected host cells impose varied degrees of regulation on viral replication, from very high to abortive. Proliferation of HIV in astrocytes is limited when compared to immune cells, such as CD4+ T lymphocytes. Understanding such differential regulation is one of the key questions in the field as these cells permit HIV persistence and rebound viremia, challenging HIV treatment and clinical cure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!