Introduction: The RNA-binding protein hnRNPA2 (HNRNPA2B1) is upregulated in cancer, where it controls alternative pre-mRNA splicing of cancer-relevant genes. Cytoplasmic hnRNPA2 is reported in aggressive cancers, but is functionally uncharacterized. We explored the role of hnRNPA2 in prostate cancer (PCa).
Methods: hnRNPA2 function/localization/expression in PCa was determined using biochemical approaches (colony forming/proliferation/luciferase reporter assays/flow cytometry/immunohistocytochemistry). Binding of hnRNPA2 within cancer-relevant 3'-UTR mRNAs was identified by bioinformatics.
Results: RNAi-mediated knockdown of hnRNPA2 reduced colony forming and proliferation, while hnRNPA2 overexpression increased proliferation of PCa cells. Nuclear hnRNPA2 is overexpressed in high-grade clinical PCa, and is also observed in the cytoplasm in some cases. Ectopic expression of a predominantly cytoplasmic variant hnRNPA2-ΔRGG also increased PCa cell proliferation, suggesting that cytoplasmic hnRNPA2 may also be functionally relevant in PCa. Consistent with its known cytoplasmic roles, hnRNPA2 was associated with 3'-UTR mRNAs of several cancer-relevant mRNAs including β-catenin (CTNNB1). Both wild-type hnRNPA2 and hnRNPA2-ΔRGG act on CTNNB1 3'-UTR mRNA, increasing endogenous CTNNB1 mRNA expression and β-catenin protein expression and nuclear localization.
Conclusion: Nuclear and cytoplasmic hnRNPA2 are present in PCa and appear to be functionally important. Cytoplasmic hnRNPA2 may affect the cancer cell phenotype through 3'-UTR mRNA-mediated regulation of β-catenin expression and other cancer-relevant genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156506 | PMC |
http://dx.doi.org/10.4161/rna.28800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!