Development of yellow mustard (Sinapis alba L.) with superior quality traits (low erucic and linolenic acid contents, and low glucosinolate content) can make this species as a potential oilseed crop. We have recently isolated three inbred lines Y1127, Y514 and Y1035 with low (3.8%), medium (12.3%) and high (20.8%) linolenic acid (C18∶3) content, respectively, in this species. Inheritance studies detected two fatty acid desaturase 3 (FAD3) gene loci controlling the variation of C18∶3 content. QTL mapping revealed that the two FAD3 gene loci responsible for 73.0% and 23.4% of the total variation and were located on the linkage groups Sal02 and Sal10, respectively. The FAD3 gene on Sal02 was referred to as SalFAD3.LA1 and that on Sal10 as SalFAD3.LA2. The dominant and recessive alleles were designated as LA1 and la1 for SalFAD3.LA1, and LA2 and la2 for SalFAD3.LA2. Cloning and alignment of the coding and genomic DNA sequences revealed that the SalFAD3.LA1 and SalFAD3.LA2 genes each contained 8 exons and 7 introns. LA1 had a coding DNA sequence (CDS) of 1143 bp encoding a polypeptide of 380 amino acids, whereas la1 was a loss-of-function allele due to an insertion of 584 bp in exon 3. Both LA2 and la2 had a CDS of 1152 bp encoding a polypeptide of 383 amino acids. Allele-specific markers for LA1, la1, LA2 and la2 co-segregated with the C18∶3 content in the F2 populations and will be useful for improving fatty acid composition through marker assisted selection in yellow mustard breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019595PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097430PLOS

Publication Analysis

Top Keywords

linolenic acid
12
yellow mustard
12
c18∶3 content
12
fad3 gene
12
la2 la2
12
allele-specific markers
8
mustard sinapis
8
sinapis alba
8
content species
8
fatty acid
8

Similar Publications

Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood.

View Article and Find Full Text PDF

The red pigment was recovered from the S. phaeolivaceus GH27 isolate, which was molecularly identified using 16S rRNA gene sequencing and submitted to GenBank as OQ145635.1.

View Article and Find Full Text PDF

Introduction: Long-term fasting (LF) activates an adaptative response to switch metabolic fuels from food glucose to lipids stored in adipose tissues. The increase in free fatty acid (FFA) oxidation during fasting triggers health benefits. We questioned if the changes in lipid metabolism during LF could affect lipids in cell membranes in humans.

View Article and Find Full Text PDF

Flaxseed and olive oil effectively treat numerous diseases and health conditions, particularly metabolic disorders. Traditional medicine has used both oils for managing cardiovascular disease, diabetes, gastrointestinal dysfunctions, metabolic-dysfunction-associated fatty liver disease (MAFLD), obesity, and more. This review explores the bioactive and polyphenolic compounds in flaxseed and olive oils that provide anti-inflammatory, antioxidant, anti-microbial, hepatoprotective, cardioprotective, antidiabetic, and gastroprotective benefits.

View Article and Find Full Text PDF

The red imported fire ants (RIFAs) are a globally important invasive pest that severely affects the ecosystem and human health, and its current control is primarily through chemical pesticides. However, the extensive use of chemical pesticides causes environmental problems, and alternative strategies for controlling this pest are being explored. In our study, we aimed to design a deep eutectic solvent (DES)-CaCO system in which RIFAs were used as target insects to increase the lethal activity and behavioural regulation effects on RIFAs via contact and feeding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!