Repetition suppression comprises both attention-independent and attention-dependent processes.

Neuroimage

Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; CNRS (Laboratoire Psychologie de la Perception, UMR 8242), 75006 Paris, France. Electronic address:

Published: September 2014

Repetition suppression, a robust phenomenon of reduction in neural responses to stimulus repetition, is suggested to consist of a combination of bottom-up adaptation and top-down prediction effects. However, there is little consensus on how repetition suppression is related to attention in functional magnetic resonance imaging (fMRI) studies. It is probably because fMRI integrates neural activity related to adaptation and prediction effects, which are respectively attention-independent and attention-dependent. Here we orthogonally manipulated stimulus repetition and attention in a target detection task while participants' electroencephalography (EEG) was recorded. In Experiment 1, we found a significant repetition effect on N1 amplitude regardless of attention, whereas the repetition effect on P2 amplitude was attention-dependent. In Experiment 2 where the attentional manipulation was more stringent than that in Experiment 1, we replicated a significant repetition effect on N1 amplitude regardless of attention, whereas the repetition effect on P2 amplitude was eliminated. The results show that repetition suppression comprises both attention-independent and attention-dependent components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2014.04.084DOI Listing

Publication Analysis

Top Keywords

repetition suppression
16
repetition amplitude
16
attention-independent attention-dependent
12
repetition
10
suppression comprises
8
comprises attention-independent
8
stimulus repetition
8
prediction effects
8
amplitude attention
8
attention repetition
8

Similar Publications

Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within ( = 9) and outside ( = 12) OTC, as well as healthy controls' two hemispheres ( = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS).

View Article and Find Full Text PDF

In the attentional blink paradigm, participants attempt to identify two targets appearing in a rapidly presented stream of distractors. Report accuracy is typically high for the first target (T1) while identification of the second target (T2) is impaired when it follows within about 200-400 ms of T1. An important question is whether T2 is processed to a semantic level even when participants are unaware of its identity.

View Article and Find Full Text PDF

Transverse mode instability (TMI) significantly limits the power scaling of ytterbium-doped fiber lasers. In this Letter, what we believe to be a novel TMI mitigation strategy is proposed and demonstrated in a bidirectional output fiber laser. On the basis of the continuous wave (CW) pump, integrating a quasi-continuous wave (QCW) pump can effectively improve the TMI threshold of the system.

View Article and Find Full Text PDF

Introduction: The plantar plate, also called the plantar ligament, is a fibrocartilaginous structure found in the metatarsophalangeal (MTP) and interphalangeal (IP) joints. Our study aimed to evaluate the role of magnetic resonance imaging (MRI) performed with the patient in the standard position or with joint hyperextension (the "stress test", ST) in the study of plantar plate (PP) disease that involves metatarsophalangeal joints.

Materials And Methods: All patients underwent forefoot MRI (Atroscan C, Esaote, Genoa, Italy), operating at 0.

View Article and Find Full Text PDF

Quantum error correction [1, 2, 3, 4] provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. Here, we present two below-threshold surface code memories on our newest generation of superconducting processors, Willow: a distance-7 code, and a distance-5 code integrated with a real-time decoder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!