The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297914030067DOI Listing

Publication Analysis

Top Keywords

long-wavelength chlorophylls
32
psi antenna
12
psi trimers
12
psi
11
long-wavelength
8
cyanobacteria origin
8
chlorophylls
8
chlorophylls psi
8
reaction center
8
energy
5

Similar Publications

Photosystem I in most organisms contains long-wavelength or "Red" chlorophylls (Chls) absorbing light beyond 700 nm. At cryogenic temperatures, the Red Chls become quasi-traps for excitations as uphill energy transfer is blocked. One pathway for de-excitation of the Red Chls is via transfer to the oxidized RC (P700), which has broad absorption in the near-infrared region.

View Article and Find Full Text PDF

The light-harvesting complexes (LHCs) of diatoms, specifically fucoxanthin-Chl / binding proteins (FCPs), exhibit structural and functional diversity, as highlighted by recent structural studies of photosystem II-FCP (PSII-FCPII) supercomplexes from different diatom species. The excitation dynamics of PSII-FCPII supercomplexes isolated from the diatom was explored using time-resolved fluorescence spectroscopy and two-dimensional electronic spectroscopy at room temperature and 77 K. Energy transfer between FCPII and PSII occurred remarkably fast (<5 ps), emphasizing the efficiency of FCPII as a light-harvesting antenna.

View Article and Find Full Text PDF

The development of chromophores that absorb in the near-infrared (NIR) region beyond 1000 nm underpins numerous applications in medical and energy sciences, yet also presents substantial challenges to molecular design and chemical synthesis. Here, the core bacteriochlorin chromophore of nature's NIR absorbers, bacteriochlorophylls, has been adapted and tailored by annulation in an effort to achieve absorption in the NIR-II region. The resulting bacteriochlorin, Phen2,1-BC, contains two annulated naphthalene groups spanning ,β-positions of the bacteriochlorin and the 1,2-positions of the naphthalene.

View Article and Find Full Text PDF

Spectral Tuning and Excitation-Energy Transfer by Unique Carotenoids in Diatom Light-Harvesting Antenna.

J Am Chem Soc

February 2024

Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya 464-8601, Japan.

The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll /-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model.

View Article and Find Full Text PDF

Deterministic/Fragmented-Stochastic Exchange for Large-Scale Hybrid DFT Calculations.

J Chem Theory Comput

December 2023

Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States.

We develop an efficient approach to evaluate range-separated exact exchange for grid- or plane-wave-based representations within the generalized Kohn-Sham-density functional theory (GKS-DFT) framework. The Coulomb kernel is fragmented in reciprocal space, and we employ a mixed deterministic-stochastic representation, retaining long-wavelength (low-) contributions deterministically and using a sparse ("fragmented") stochastic basis for the high- part. Coupled with a projection of the Hamiltonian onto a subspace of valence and conduction states from a prior local-DFT calculation, this method allows for the calculation of the long-range exchange of large molecular systems with hundreds and potentially thousands of coupled valence states delocalized over millions of grid points.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!