The gating kinetics of single-ion channels are generally modeled in terms of Markov processes with relatively small numbers of channel states. More recently, fractal (Liebovitch et al. 1987. Math. Biosci. 84:37-68) and diffusion (Millhauser et al. 1988. Proc. Natl. Acad. Sci. USA. 85:1502-1507) models of channel gating have been proposed. These models propose the existence of many similar conformational substrates of the channel protein, all of which contribute to the observed gating kinetics. It is important to determine whether or not Markov models provide the most accurate description of channel kinetics if progress is to be made in understanding the molecular events of channel gating. In this study six alternative classes of gating model are tested against experimental single-channel data. The single-channel data employed are from (a) delayed rectifier K+ channels of NG 108-15 cells and (b) locust muscle glutamate receptor channels. The models tested are (a) Markov, (b) fractal, (c) one-dimensional diffusion, (d) three-dimensional diffusion, (e) stretched exponential, and (f) expo-exponential. The models are compared by fitting the predicted distributions of channel open and closed times to those observed experimentally. The models are ranked in order of goodness-of-fit using a boot-strap resampling procedure. The results suggest that Markov models provide a markedly better description of the observed open and closed time distributions for both types of channel. This provides justification for the continued use of Markov models to explore channel gating mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1280626 | PMC |
http://dx.doi.org/10.1016/S0006-3495(89)82770-5 | DOI Listing |
J Neurosci
January 2025
Carney Institute for Brain Science, Brown University, Providence, RI 02912
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the function of the NMJ is to transduce nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires both cholinergic signaling, responsible for generation of endplate potentials (EPPs), and excitation, the amplification of the EPP by postsynaptic voltage-gated sodium channels (Nav1.
View Article and Find Full Text PDFJ Neurosci
January 2025
Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K1 channels implement a high-pass filter.
View Article and Find Full Text PDFeNeuro
January 2025
University of Kassel, 34132 Kassel, Germany.
Evolutionary pressures adapted insect chemosensation to the respective insect's physiological needs and tasks in their ecological niches. Solitary nocturnal moths rely on their acute olfactory sense to find mates at night. Pheromones are detected with maximized sensitivity and high temporal resolution through mechanisms that are mostly unknown.
View Article and Find Full Text PDFNeuropharmacology
January 2025
Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229, USA. Electronic address:
Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, CO 80523, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA. Electronic address:
The Shab family voltage-gated K channels (i.e., Kv2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!