Tunisian microalgae are diverse and rarely been studied. This study reports a first investigation of thermophile Chlorophyta isolated from mats community colonizing the geothermal springs in the north of Tunisia at water temperature 60 °C. In the study, the combined effect of temperature and light intensity was investigated on the cell growth, the mother and daughter cells abundance and the extracellular polymeric substances synthesis in batch culture of the isolated species. Three levels were tested for each factor, 20, 30, 40 °C for temperature; and 20, 70, 120 μmol photons m(-2) s(-1) for light intensity, using full factorial design and response surface methodology. The thermophile strain was identified as a genus Graesiella and showed 99.8% similarity with two Graesiella species: Graesiella emersonii and Graesiella vacuolata based on the 18S rDNA molecular identification. The optimal growth condition was found at 30 °C and 120 µmol photons m(-2) s(-1) (7 MC mL(-1) day(-1)), with the abundance of vegetative cells (daughter cells). In contrast, the number of mother cells increased significantly as the growth decreased; consequently, the highest ratio of auto spore mother cells versus daughter cells (19.4) was obtained at 20 °C and 20 µmol photons m(-2) s(-1). The highest yield of EPS production (11.7 mg L(-1) day(-1)) was recorded at the highest temperature (40 °C) and lowest light intensity (20 µmol photons m(-2)s(-1)). These results revealed how the species respond to high and low temperatures and suggest that the species should be considered as facultative thermophile.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-014-1204-7DOI Listing

Publication Analysis

Top Keywords

light intensity
16
daughter cells
12
photons m-2
12
m-2 s-1
12
µmol photons
12
temperature light
8
genus graesiella
8
temperature °c
8
mother cells
8
cells
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!