We report experimental spectra in the mid-infrared (IR) and near-IR for a series of dibenzoacenes isolated in Ar matrices. The experiments are supported by Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculations with both vibrational and electronic transitions studied. For the neutrals, we find good agreement between the experimental and B3LYP and BP86 results for all species studied. The band at about 1440 cm(-1) carries more intensity than in typical PAHs and increases in intensity with the size of the dibenzoacene molecule. For the ions the B3LYP approach fails to yield reasonable IR spectra for most systems and the BP86 approach is used. Electronic transitions dominate the vibrational bands in the mid-IR region for the large dibenzoacene ions. In spite of the very strong electronic transitions, there is still reasonable agreement between theory and experiment for the vibrational band positions. The experimental and theoretical results for the dibenzoacenes are also compared with those for the polyacenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2014.04.017 | DOI Listing |
Small
January 2025
Key Laboratory of Multiscale Spin Physics, Ministry of Education, School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China.
The etch-engineering is a feasible avenue to tailor the layer number and morphology of 2D layered materials during the chemical vapor deposition (CVD) growth. However, less reports strengthen the etch-engineering used in the fabrication of high-quality transition metal dichalcogenide (TMD) materials with tunable layers and desirable morphologies to improve their prominent performance in electronic and optoelectronic devices. Here, an etching-and-growth coexistence method is reported to directly synthesize high-quality, high-symmetric MoS bilayers with versatile morphologies via CVD.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Jiaotong University: Shanghai Jiao Tong University, College of Smart Energy, CHINA.
Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.
View Article and Find Full Text PDFACS Nano
January 2025
Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil.
Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.
View Article and Find Full Text PDFNat Commun
January 2025
International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Condensed Matter Physics, University of Zaragoza, Zaragoza, Spain.
Recent studies have shown that novel collective behaviors emerge in complex systems due to the presence of higher-order interactions. However, how the collective behavior of a system is influenced by the microscopic organization of its higher-order interactions is not fully understood. In this work, we introduce a way to quantify the overlap among the hyperedges of a higher-order network, and we show that real-world systems exhibit different levels of intra-order hyperedge overlap.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!