Charcot-Marie-Tooth (CMT) diseases include a group of clinically heterogeneous inherited neuropathies subdivided into demyelinating (CMT1), axonal (CMT2) and intermediate CMT forms. CMTs are associated with different genes, although mutations in some of these genes may cause both clinical pictures. To date, more than 50 CMT genes have been identified, but more than half of the cases are due to mutations in MFN2, MPZ, GJB1 and PMP22. The aim of this study was to estimate the frequency of disease mutations of these four genes in the axonal form of CMT in order to evaluate their effectiveness in the molecular diagnosis of CMT2 patients. A cohort of 38 CMT2 Italian subjects was screened for mutations in the MFN2, MPZ and GJB1 genes by direct sequencing and for PMP22 rearrangements using the MLPA technique. Overall, we identified 15 mutations, 8 of which were novel: 11 mutations (28.9 %) were in the MFN2 gene, 2 (5.3 %) in MPZ and 2 (5.3 %) in PMP22. No mutations were found in GJB1. Two patients showed rearrangements in the PMP22 gene, which is commonly associated with CMT1 or HNPP phenotypes thus usually not tested in CMT2 patients. By including this gene in the analysis, we reached a molecular diagnosis rate of 39.5 %, which is one of the highest reported in the literature. Our findings confirm the MFN2 gene as the most common cause of CMT2 and suggest that PMP22 rearrangements should be considered in the molecular diagnosis of CMT2 patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12017-014-8307-9DOI Listing

Publication Analysis

Top Keywords

molecular diagnosis
12
cmt2 patients
12
mutations mfn2
8
mfn2 mpz
8
mpz gjb1
8
diagnosis cmt2
8
pmp22 rearrangements
8
mfn2 gene
8
pmp22
6
cmt2
6

Similar Publications

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!