Previous studies report that microsized monosodium titanates (MSTs) deliver metal ions and species to mammalian cells and bacteria with cell-specific and metal-specific effects. In this study, we explored the use of MST and a new synthesized nanosized monosodium titanate (nMST) to deliver gold(III), cisplatin, or platinum(IV) to two human cell lines with different population doubling times, in vitro. The effect was measured using a fluorescent mitochondrial activity assay (CellTiter-Blue(®) Assay). This fluorescence assay was implemented to mitigate optical density measurement errors owing to particulate titanate interference and allowed for the studies to be extended to higher titanate concentrations than previously possible. Overall, native MST significantly (p < 0.05) decreased mitochondrial activity of both cell types by 50% at concentrations of >50 mg/L. Native nMST significantly suppressed the rapidly dividing cell line (by 50%) over untreated cultures, but had no effect on the more slowly dividing cells. For both cell types, increased titanate concentrations resulted in increased effects from delivered metals. However, there was no difference in the effect of metal delivered from micro- versus nano-sized MST.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33194DOI Listing

Publication Analysis

Top Keywords

monosodium titanates
8
titanate concentrations
8
vitro biological
4
biological response
4
response micro-
4
micro- nano-sized
4
nano-sized monosodium
4
titanates titanate-metal
4
titanate-metal compounds
4
compounds previous
4

Similar Publications

Purpose: The calcium ion [Ca(II)] release from monosodium titanates (MST) complexed to calcium ions [Ca(II)], referred to as MST-Ca(II), was examined under varying incubation times, pH conditions, and ion equilibrium disruptions.

Methods: Sample supernatants were analyzed for Ca(II) using the QuantiChrom Calcium Assay Kit.

Results: No Ca(II) was detected in native MST (control) supernatants but was detected in MST-Ca(II) supernatants.

View Article and Find Full Text PDF

Peroxide-treated metal-organic framework templated adsorbents for remediation of high level nuclear waste.

J Hazard Mater

March 2019

Chemical Sciences Division, Oak Ridge National Laboratory. One Bethel Valley Road, Oak Ridge, TN, 37831, United States.

Remediation of legacy nuclear waste is one of the greatest challenges faced by the US Department of Energy, with projected cleanup efforts requiring over five decades and hundreds of billions of dollars. New materials are necessary to accelerate waste processing, achieving time and financial savings. Herein we report a peroxide treatment to a Ti metal-organic framework (MOF) and related MOF-templated adsorbents.

View Article and Find Full Text PDF

Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications.

View Article and Find Full Text PDF

This paper describes the synthesis and peroxide-modification of nanosize monosodium titanate (nMST), along with an ion-exchange reaction to load the material with Au(III) ions. The synthesis method was derived from a sol-gel process used to produce micron-sized monosodium titanate (MST), with several key modifications, including altering reagent concentrations, omitting a particle seed step, and introducing a non-ionic surfactant to facilitate control of particle formation and growth. The resultant nMST material exhibits spherical-shaped particle morphology with a monodisperse distribution of particle diameters in the range from 100 to 150 nm.

View Article and Find Full Text PDF

: Gram-positive cariogenic bacteria are etiological agents in dental caries; therefore, strategies to inhibit these bacteria to reduce the incident of this disease have intensified. In this study, we investigated antibacterial activities of titanates and gold-titanates against (Lc) and (Sm). : Monosodium titanate (MST), nanomonosodium titanate (nMST) and amorphous peroxo-titanate (APT), which are inorganic compounds with high-binding affinity for specific metal ions, were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!