A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolism of arsenic trioxide in acute promyelocytic leukemia cells. | LitMetric

Metabolism of arsenic trioxide in acute promyelocytic leukemia cells.

J Cell Biochem

Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tehran, Iran; Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Published: October 2014

Arsenic trioxide (As2O3) effectively induces complete clinical and molecular remissions in acute promyelocytic leukemia (APL) patients and triggers apoptosis in APL cells. The effect induced by As2O3 is also associated with extensive genomic-wide epigenetic changes with large-scale alterations in DNA methylation. We investigated the As2O3 metabolism in association with factors involved in the production of its methylated metabolites in APL-derived cell line, NB4. We used high performance liquid chromatography (HPLC) technique to detect As2O3 metabolites in NB4 cells. The effects of As2O3 on glutathione level, S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were investigated. Also, we studied the expression levels of arsenic methyltransferase (AS3MT) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) by real-time PCR. Our results show that after As2O3 entry into the cell, it was converted into methylated metabolites, mono-methylarsenic (MMA) and dimethylarsenic (DMA). The glutathione (GSH) production was increased in parallel with the methylated metabolites formations. As2O3 treatment inhibited DNMTs (DNMT1, DNMT3a, and DNMT3b) in dose- and time-dependent manners. The SAH levels in As2O3-treated cells were increased; however, the SAM level was not affected. The present study shows that APL cell is capable of metabolizing As2O3. The continuous formation of intracellular methylated metabolites, the inhibition of DNMTs expression levels and the increase of SAH level by As2O3 biotransformation would probably affect the DNMTs-methylated DNA methylation in a manner related to the extent of DNA hypomethylation. Production of intracellular methylated metabolites and epigenetic changes of DNA methylation during As2O3 metabolism may contribute to the therapeutic effect of As2O3 in APL.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24838DOI Listing

Publication Analysis

Top Keywords

methylated metabolites
20
dna methylation
12
as2o3
11
arsenic trioxide
8
acute promyelocytic
8
promyelocytic leukemia
8
epigenetic changes
8
as2o3 metabolism
8
sah levels
8
expression levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!