Gene transfer: conjugation.

Methods Mol Biol

Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255-CNRS & Aix-Marseille Université, IMM, 31 chemin Jospeh Aiguier, 13402, Marseille, France.

Published: March 2015

AI Article Synopsis

  • Conjugation is a process where one bacterium transfers DNA to another through direct cell contact using structures called conjugative pili.
  • This gene transfer is facilitated by specific DNA elements such as plasmids or transposons.
  • The text focuses specifically on how plasmid conjugation occurs in bacteria.

Article Abstract

Conjugation is a gene transfer process in which a recipient bacterium receives DNA from a donor bacterium by cell-to-cell contact through conjugative pili. Conjugation is mediated by certain plasmids or transposons. Here, we describe plasmid conjugation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-0473-0_3DOI Listing

Publication Analysis

Top Keywords

gene transfer
8
conjugation
4
transfer conjugation
4
conjugation conjugation
4
conjugation gene
4
transfer process
4
process recipient
4
recipient bacterium
4
bacterium receives
4
receives dna
4

Similar Publications

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

tRF-AspGTC Promotes Intracranial Aneurysm Formation by Controlling TRIM29-Mediated Galectin-3 Ubiquitination.

Research (Wash D C)

January 2025

Department of Neurosurgery and Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.

Transfer RNA-derived small RNAs, a recently identified class of small noncoding RNAs, play a crucial role in regulating gene expression and are implicated in cerebrovascular diseases. However, the specific biological roles and mechanisms of transfer RNA-derived small RNAs in intracranial aneurysms (IAs) remain unclear. In this study, we identified that the transfer RNA-Asp-GTC derived fragment (tRF-AspGTC) is highly expressed in the IA tissues of both humans and mice.

View Article and Find Full Text PDF

Characterization of the complete plastid genome of (Amaryllidaceae).

Mitochondrial DNA B Resour

December 2024

Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, China.

Rourke 2002 is an evergreen herbaceous flower with high ornamental value. In this study, we sequenced the complete chloroplast (cp) genome of and reported it for the first time. The cp genome was 158,914 base pairs (bp) in total length, including two inverted repeats (IRs, 27,052 bp), separated by a large single-copy region (LSC, 86,519 bp) and a small single-copy region (SSC, 18,291 bp).

View Article and Find Full Text PDF

, a perennial herb in subsection , is endemic to the snowy mountainous regions on the Sea of Japan side of Japan. Its complete chloroplast genome was 156,056 bp in length, comprising one large single-copy region (86,407 bp), one small single-copy region (17,301 bp), and two inverted repeat regions (27,174 bp each). It contained 111 unique genes, including 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes.

View Article and Find Full Text PDF

The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress.

Tree Physiol

January 2025

Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.

Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!