When analysing human movement through stereophotogrammetry, skin-markers are used. Their movement relative to the underlying bone is known as a soft tissue artefact (STA). A mathematical model to estimate subject- and marker-specific STAs generated during a given motor task, is required for both skeletal kinematic estimators and comparative assessment using simulation. This study devises and assesses such a mathematical model using the paradigmatic case of thigh STAs. The model was based on two hypotheses: (1) that the artefact mostly depends on skin sliding, and thus on the angles of hip and knee; (2) that the relevant relationship is linear. These hypotheses were tested using data obtained from passive hip and knee movements in non-obese specimens and from running volunteers endowed with both skin- and pin-markers. Results showed that the proposed model could be calibrated with small residuals and that the thigh artefacts were mostly due to skin sliding, not only ex-vivo, as expected, but also in-vivo. This was corroborated by the observation that in-vivo, the portion of the artefact not reconstructed by the model fell within a frequency band compatible with soft tissue wobbling and carried a relatively small portion of total mean power (13%, on average). Thus, the architecture of our model is feasible both ex-vivo and in-vivo and can, in principle, be used in skeletal kinematics estimators. The generalizability of a calibrated model across different movements was proved doable, albeit limited to movement patterns similar to those of the calibration movement, even if joint rotation ranges can be remarkably different. Therefore, such a calibrated model can be used for generating realistic STAs for simulation purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2014.04.029DOI Listing

Publication Analysis

Top Keywords

soft tissue
12
model
9
tissue artefact
8
mathematical model
8
skin sliding
8
hip knee
8
calibrated model
8
artefact
4
artefact model
4
model driven
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!