Acclimation of leaf features to growth temperature was investigated in two biennials (whose life cycle spans summer and winter seasons) using different mechanisms of sugar loading into exporting conduits, Verbascum phoeniceum (employs sugar-synthesizing enzymes driving symplastic loading through plasmodesmatal wall pores of phloem cells) and Malva neglecta (likely apoplastic loader transporting sugar via membrane transport proteins of phloem cells). In both species, acclimation to lower temperature involved greater maximal photosynthesis rates and vein density per leaf area in close correlation with modification of minor vein cellular features. While the symplastically loading biennial exhibited adjustments in the size of minor leaf vein cells (consistent with adjustment of the level of sugar-synthesizing enzymes), the putative apoplastic biennial exhibited adjustments in the number of cells (consistent with adjustment of cell membrane area for transporter placement). This upregulation of morphological and anatomical features at lower growth temperature likely contributes to the success of both the species during the winter. Furthermore, while acclimation to low temperature involved greater leaf mass per area in both species, this resulted from greater leaf thickness in V. phoeniceum vs a greater number of mesophyll cells per leaf area in M. neglecta. Both types of adjustments presumably accommodate more chloroplasts per leaf area contributing to photosynthesis. Both biennials exhibited high foliar vein densities (particularly the solar-tracking M. neglecta), which should aid both sugar export from and delivery of water to the leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ppl.12226DOI Listing

Publication Analysis

Top Keywords

leaf area
12
leaf
8
growth temperature
8
sugar-synthesizing enzymes
8
phloem cells
8
temperature involved
8
involved greater
8
biennial exhibited
8
exhibited adjustments
8
cells consistent
8

Similar Publications

Urbanization is transforming landscapes globally, altering environmental conditions that affect ecosystem functioning, particularly in urban areas where trees are crucial for regulating microclimates, improving air quality, and sustaining biodiversity. This study investigates the environmental differences and tree leaf structure and morphology in urban and suburban sites in the Chicago Metropolitan Region. The leaf functional traits of Norway Maple and Little - leaved Linden were studied in three locations in the summer of 2023: an urban park (University of Illinois Chicago, Chicago, IL), a suburban park (Morton Arboretum, Lisle, IL), and a suburban residential site (Lombard, IL).

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the skeletal, dental, and soft tissue effects of the nickel titanium memory Leaf Expander in a growing sample of patients with unilateral posterior crossbite compared with a control group using digital models and lateral cephalometric radiographs.

Methods: The research included a total of 24 patients, 12 of whom were treated and 12 untreated. The Leaf Expander group consisted of 4 males and 8 females (mean age= 8.

View Article and Find Full Text PDF

Tobacco ( L.) is an economically important crop in China. In April 2024, field tobacco (cv.

View Article and Find Full Text PDF

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

, commonly known as stock, is a flowering plant species in the Brassicaceae popularly used as a cut flower due to its fragrant, long-lasting blooms. In September 2023, stock 'Iron White' plants displaying symptoms and signs of downy mildew were observed within a high tunnel in a cut flower farm in Franklin Co., OH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!