Purpose: A low direct current can be used to disinfect dental titanium implants in simulated physiologic environments. The aim of this study was to determine whether this treatment affects implant surface structure and cytocompatibility.

Materials And Methods: Titanium test disks with a sandblasted, acid-etched, large-grit (SLA) surface were placed as anodes in an electrolytic bath with physiologic saline and treated with 15 mA of current for 15 minutes. Surfaces were analyzed by light and electron microscopy and contact angle measurement. Depth profile analyses of SLA disks were run at subsurface levels from 0 to 1,000 nm. The proliferation and viability of preosteoblastic cells and human foreskin fibroblasts on implant surfaces were assessed. Alkaline phosphatase (ALP) activity was determined with and without exposure to bone morphogenetic protein-2 (BMP-2). Mineralization was determined after 4 weeks.

Results: A blue discoloration was observed after treating the SLA disks, but no damage was recognized microscopically. An oxidation layer formed on the surface and the wettability of the disks increased significantly. Cell proliferation and initial maturation were not affected by the treatment. Mineralization and ALP activity of BMP-exposed cells, however, were slightly but significantly reduced on test disks.

Conclusions: The current study showed that the alterations in implant color after electrochemical treatment did not reflect significant surface changes, which would preclude cell adhesion and growth or have a major impact on osteoblastic differentiation or maturation.

Download full-text PDF

Source
http://dx.doi.org/10.11607/jomi.3342DOI Listing

Publication Analysis

Top Keywords

direct current
8
surface structure
8
sla disks
8
alp activity
8
surface
5
current surface
4
structure cytocompatibility
4
cytocompatibility titanium
4
titanium dental
4
dental implants
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!