Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12629DOI Listing

Publication Analysis

Top Keywords

aboveground biomass
24
vegetation types
16
allometric models
12
trunk diameter
12
total tree
8
tree height
8
wood specific
8
specific gravity
8
tropical vegetation
8
biomass
7

Similar Publications

Effects of polystyrene microplastics on the growth and metabolism of highland barley seedlings based on LC-MS.

Front Plant Sci

December 2024

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.

Microplastics are widely present in the environment and can adversely affect plants. In this paper, the effects of different concentrations of microplastics on physiological indices and metabolites of highland barley were investigated for the first time using a metabolomics approach, and revealed the response mechanism of barley seedlings to polystyrene microplastics (PS-MPs) was revealed. The results showed that the aboveground biomass of highland barley exposed to low (10 mg/L) and medium (50 mg/L) concentrations of PS-MPs increased by 32.

View Article and Find Full Text PDF

Rational utilization of natural resources is crucial in arid and semi-arid areas due to their vulnerable ecosystems and low resource resilience. Achieving a balance between grassland production and livestock grazing, known as the pasture-livestock balance, is essential for the sustainable development of grassland resources on the Mongolian Plateau (MP). This study focuses on the grassland regions of 8 provinces in eastern Mongolia (MNG) and 7 leagues in Inner Mongolia (IMNG), China, during the period from 2018 to 2022.

View Article and Find Full Text PDF

Synergy and trade-off between plant functional traits enhance grassland multifunctionality under grazing exclusion in a semi-arid region.

J Environ Manage

December 2024

State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.

Grazing exclusion is effective in restoring vegetation and ecological services in degraded grasslands within semi-arid regions. Variations in plant functional traits associated with the duration of grazing exclusion can indicate both ecological adaptability of plants and restoration processes of ecosystems. However, research on ecosystem multifunctionality (EMF) under grazing exclusion and restoration mechanisms mediated by plant functional traits is relatively limited.

View Article and Find Full Text PDF

Plants play a key role in the ecological restoration of urban wetlands. Previous studies have shown that heavy-metal accumulation capacities and adaptation strategies of wetland plants may be related to their life forms. In this study, pot experiments were conducted to investigate the effects of nitrogen (N) on the adaptation strategies of two evergreen and deciduous aquatic iris life forms under cadmium (Cd) stress.

View Article and Find Full Text PDF

Estimation of forest biomass at regional scale based on GEDI spaceborne LiDAR data is of great significance for forest quality assessment and carbon cycle. To solve the problem of discontinuous data of GEDI footprints, this study mapped different echo indexes in the footprints to the surface by inverse distance weighted interpolation method, and verified the influence of different number of footprints on the interpolation results. Random forest algorithm was chosen to estimate the spruce-fir biomass combined with the parameters provided by GEDI and 138 spruce-fir sample plots in Shangri-La.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!