Background: Black leaf streak disease (BLSD) is the most important disease of bananas for export. The successful control of BLSD requires an intensive use of systemic fungicides, leading to the build-up of resistance and failure of control. Early detection of fungicide resistance is crucial to drive rational chemical strategies. Present methods relying on ascospore germination bioassays have several drawbacks that could be overcome using conidia.

Results: Generally, a single genotype is present on the conidial population derived from one lesion. Conidial germination tests with thiabendazole (5 mg L(-1)) enable a clear detection of strains resistant to methyl benzimidazole carbamates. Germination bioassays on azoxystrobin (10 mg L(-1)) enable the detection of most QoI-resistant strains, but their proportion might be underestimated with cut-off limits of germ tube length (L > 120 µm) or growth inhibition (GI < 50%). The level of fungicide resistance differs at different canopy levels of a banana tree, which should be considered for sampling. The ascospore germination bioassay provided more variable estimations of the level of resistance by comparison with the new conidial germination bioassay.

Conclusion: Germination bioassays performed with conidia obtained from young lesions overcome most drawbacks encountered with ascospore germination bioassays and could be considered as a new reference method for fungicide resistance monitoring in this species. Different steps are proposed, from sampling to microscopic examinations, for the implementation of this technique.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.3825DOI Listing

Publication Analysis

Top Keywords

germination bioassays
16
fungicide resistance
12
ascospore germination
12
conidial germination
8
germination
7
resistance
5
novel bioassay
4
bioassay monitor
4
fungicide
4
monitor fungicide
4

Similar Publications

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Ecotoxicological bioassays with terrestrial plants: a holistic view of standards, guidelines, and protocols.

J Toxicol Environ Health B Crit Rev

January 2025

Department of Ecology and Conservation, Institute of Natural Sciences, Federal University of Lavras, Lavras, MG, Brazil.

Terrestrial and aquatic ecosystems face various chemicals that might induce acute and/or long-term harm. To assess these impacts, ecotoxicological bioassays are essential. However, bioassays using animals, particularly mammals, are costly, time-consuming, and raise ethical concerns.

View Article and Find Full Text PDF

Phytotoxicity Study of (Amino)imidazo[1,2-]pyridine Derivatives Toward the Control of , , and Weeds.

J Agric Food Chem

January 2025

Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970 Brasília, DF, Brazil.

In this work, several imidazo[1,2-]pyridines were synthesized through the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR), and their phytotoxicity was evaluated by the influence on the growth of wheat coleoptiles and three important agricultural seeds (, , and ) at test concentrations of 1000, 300, 100, 30, and 10 μM. A structure-activity relationship was established, showing the importance of halogen groups at the position of the attached aromatic ring and the presence of a cyclohexylamine group for greater activity. Post-modification of some GBB-3CR adducts was carried out, leading to imidazo[1,2-]pyridine-tetrazole hybrids, which were also evaluated in these bioassays.

View Article and Find Full Text PDF

Identification and Characterization of Endophytic Fungus DJE2023 Isolated from Banana ( sp. cv. Dajiao) with Potential for Biocontrol of Banana Fusarium Wilt.

J Fungi (Basel)

December 2024

Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.

This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.

View Article and Find Full Text PDF

This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against , the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of , with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!