A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical basis of otoacoustic emissions in tympanal hearing organs. | LitMetric

Mechanical basis of otoacoustic emissions in tympanal hearing organs.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

Institut für Zellbiologie und Neurowissenschaft, J. W. Goethe-Universität, Biologicum A, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany,

Published: July 2014

Tympanal hearing organs of insects emit distortion-product otoacoustic emissions (DPOAEs), which in mammals are used as indicator for nonlinear cochlear amplification, and which are highly vulnerable to manipulations interfering with the animal's physiological state. Although in previous studies, evidence was provided for the involvement of auditory mechanoreceptors, the source of DPOAE generation and possible active mechanisms in tympanal organs remained unknown. Using laser Doppler vibrometry in the locust ear, we show that DPOAEs mechanically emerge at the tympanum region where the auditory mechanoreceptors are attached. Those emission-coupled vibrations differed remarkably from tympanum waves evoked by external pure tones of the same frequency, in terms of wave propagation, energy distribution, and location of amplitude maxima. Selective inactivation of the auditory receptor cells by mechanical lesions did not affect the tympanum's response to external pure tones, but abolished the emission's displacement amplitude peak. These findings provide evidence that tympanal auditory receptors, comparable to the situation in mammals, comprise the required nonlinear response characteristics, which during two-tone stimulation lead to additional, highly localized deflections of the tympanum.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00359-014-0914-2DOI Listing

Publication Analysis

Top Keywords

otoacoustic emissions
8
tympanal hearing
8
hearing organs
8
auditory mechanoreceptors
8
external pure
8
pure tones
8
mechanical basis
4
basis otoacoustic
4
tympanal
4
emissions tympanal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!