Redox and complexation chemistry of the CrVI/CrV-D-glucaric acid system.

Dalton Trans

Área Química General, Departamento de Químico-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, UNR, Instituto de Química de Rosario-CONICET, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina.

Published: June 2014

When an excess of uronic acid over Cr(VI) is used, the oxidation of D-glucaric acid (Glucar) by Cr(VI) yields D-arabinaric acid, CO2 and Cr(III)-Glucar complex as final redox products. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species. The reaction rate increases with [H(+)] and [substrate]. The experimental results indicated that Cr(IV) and Cr(V) are very reactive intermediates since their disappearance rates are much faster than Cr(VI). Cr(IV) and Cr(V) intermediates are involved in fast steps and do not accumulate in the redox reaction of the mixture Cr(VI)-Glucar. Kinetic studies show that the redox reaction between Glucar and Cr(VI) proceeds through a mechanism combining one- and two-electron pathways: Cr(VI) → Cr(IV) → Cr(II) and Cr(VI) → Cr(IV) → Cr(III). After the redox reaction, results show a slow hydrolysis of the Cr(III)-Glucar complex into [Cr(OH2)6](3+). The proposed mechanism is supported by the observation of free radicals, CrO2(2+) (superoxo-Cr(III) ion) and oxo-Cr(V)-Glucar species as reaction intermediates. The continuous-wave electron paramagnetic resonance, CW-EPR, spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH ≤ 4 with the aldaric acid bound to oxo-Cr(V) through the carboxylate and the α-OH group. A different oxo-Cr(V) species with Glucar was detected at pH 6.0. The high g(iso) value for the last species suggests a mixed coordination species, a five-coordinated oxo-Cr(V) bischelate with one molecule of Glucar acting as a bi-dentate ligand, using the 2-hydroxycarboxylate group, and a second molecule of Glucar with any vic-diolate sites. At pH 7.5 only a very weak EPR signal was observed, which may point to instability of these complexes. This behaviour contrasts with oxo-Cr(V)-uronic species, and must thus be related to the Glucar acyclic structure. In vitro, our studies on the chemistry of oxo-Cr(V)-Glucar complexes can provide information on the nature of the species that are likely to be stabilized in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4dt00717dDOI Listing

Publication Analysis

Top Keywords

redox reaction
16
criv crv
12
glucar crvi
8
criii-glucar complex
8
species reaction
8
crvi →
8
→ criv
8
criv →
8
species glucar
8
molecule glucar
8

Similar Publications

Bimetallic nanoreactor mediates cascade amplification of oxidative stress for complementary chemodynamic-immunotherapy of tumor.

Biomaterials

December 2024

Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430072, PR China. Electronic address:

As a promising tumor treatment, chemodynamic therapy (CDT) can specifically catalyze HO into the cytotoxic hydroxyl radical (·OH) via Fenton/Fenton-like reaction. However, the limited HO and weakly acidic pH in tumor microenvironment (TME) would severely restrict the therapeutic efficiency of CDT. Here, a weakly acid activated, HO self-supplied, hyaluronic acid (HA)-functionalized Ce/Cu bimetallic nanoreactor (CBPNs@HA) is elaborately designed for complementary chemodynamic-immunotherapy.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.

View Article and Find Full Text PDF

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.

View Article and Find Full Text PDF

Identifying key factors that control the chemical evolution of groundwater along groundwater flow direction is essential in ensuring the safety of groundwater resources in upper watersheds and lower plains. In this study, the ion ratio, multivariate statistics, and inverse geochemical modeling were used to investigate and explore the chemical characteristics of groundwater and factors driving the formation of groundwater components in the plain area of Deyang City, China. The chemical type of groundwater in the area was dominated by the HCO-Ca type, and the variation in groundwater chemical composition was mainly affected by water-rock interaction and human interference.

View Article and Find Full Text PDF
Article Synopsis
  • Nanocatalytic medicine aims to improve cancer treatment by developing nanotechnologies that selectively target tumor cells while sparing normal cells.
  • The proposed solution involves using pH- and redox-responsive ferrocene-containing polymersomes (FcPsomes) that can control radical production and release therapeutic molecules based on their environment.
  • These FcPsomes can facilitate a synergistic treatment approach by producing reactive oxygen species through the Fenton reaction, allowing for targeted and safe therapies that adapt to the tumor's conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!