Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented. The goal of this framework is two-fold. First, it provides some common ground between the seemingly large range of different approaches existing in the BDFT literature. Second, the framework itself allows for gaining new insights into BDFT phenomena. It will be shown how relevant signals can be obtained from measurement, how different BDFT dynamics can be derived from them, and how these different dynamics are related. Using the framework, BDFT can be dissected into several dynamical relationships, each relevant in understanding BDFT phenomena in more detail. The presentation of the BDFT framework is divided into two parts. This paper, Part I, addresses the theoretical foundations of the framework. Part II, which is also published in this issue, addresses the validation of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2014.2311043DOI Listing

Publication Analysis

Top Keywords

biodynamic feedthrough
12
framework
8
framework biodynamic
8
theoretical foundations
8
bdft
8
bdft phenomena
8
feedthrough analysis--part
4
analysis--part theoretical
4
foundations biodynamic
4
feedthrough bdft
4

Similar Publications

Biodynamic feedthrough (BDFT) refers to the feedthrough of vehicle accelerations through the human body, leading to involuntary control device inputs. BDFT impairs control performance in a large range of vehicles under various circumstances. Research shows that BDFT strongly depends on adaptations in the neuromuscular admittance dynamics of the human body.

View Article and Find Full Text PDF

Biodynamic feedthrough (BDFT) is a complex phenomenon, that has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, the framework for BDFT analysis, as presented in Part I of this dual publication, is validated and applied.

View Article and Find Full Text PDF

Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented.

View Article and Find Full Text PDF

A biodynamic feedthrough (BDFT) model is proposed that describes how vehicle accelerations feed through the human body, causing involuntary limb motions and so involuntary control inputs. BDFT dynamics strongly depend on limb dynamics, which can vary between persons (between-subject variability), but also within one person over time, e.g.

View Article and Find Full Text PDF

Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the human body and cause involuntary control inputs. This paper proposes a model to quantitatively predict this effect in rotorcraft. This mathematical BDFT model aims to fill the gap between the currently existing black box BDFT models and physical BDFT models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!